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§1. Introduction and Notation

The purpose of this article is to give an account of the
application of single variable dispersion relations to calculate the main
parameters of low energy pion-nucleon scattering and the low energy
phase shifts, The input data consists of fairly complete information
about the total cross-sections and the dominant resonances of the x-N
system, Our aim is to give precise numerical values of the parameters
and low energy phase shifts, since these quantities are required for a
variety of purposes in other investigations. We do not attempt here to
give any physical discussion of low energy pion-nucleon scattering(1).

Also it should be emphasized that this article only discusses those

topics with which one or both of the authors have been directly involved.

(1) For a physical discussion of the dominant (34 y )2 ) state see
G.F.Chew and F.E.low, Phys.Rev., 101, 1570 (1956). For the remsining
p-wave states and the s-wave states see for example, J.Hamilton, P.Menotti,

G.C.Oades and L.L.J.Vick, University College London, Preprint (1962)

We do not claim any completeness for the topics discussed or for the
references,

(i) Summary of the Topics Discussed

In .§1(ii) we give the relativistic notation for the pion-nucleon

scattering amplitudes which was used by Chew, Goldberger, Low and Nambu(z)

(to be referred to as CGLN). This rotation is used throughout.

(2) G.F.Chew, M.L,Goldberger, F.E.,Low and Y. Nambu, Phya.?ev. ;06, 1337
. 1957
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In the same section we give the charge notation, the appropriate partial
wave analysis and the basic dispersion relations themselves.

In applying dispersion relations, the questions of high energy
behaviour and the subtractions are of considerable importance. In § 2
we discuss their mathematical and physical features both for forward and
fixed momentum-transfer pion-nucleon scattering. This involves some
account of Pomeranchuk's theorem and the Regge pole method.

Physical measurements of pion-nucleon scattering are conveniently
expressed in terms of partial wave amplitudes and phase shifts, but the
dispersion relations which are useful for our purposes refer to
scattering amplitudes, The relation between these quantities is given
by the Legendre series for the expansidn of scattering amplitudes. The
rate of convergence of this series and of its inverse is a matter of basic
importance in any attempt to predict low energy pion-nucleon phase shifts
by dispersion relations. In §;} these convergence problems are examined.
We use both the domains of convergence given by Lehmann's theorems, and the
larger domains of convergence which follow from the Mandelstam representation.
(In this article the Mandelstam representation has only been used to give
these domains of convergence of the Legendre series and of its inverse.
Moreover the results of the calculations of partial wave amplitudes appear
to give strong support to the validitj of the larger domains of convergence
which are obtained from the Mandelstam representation).

(3)

In‘§lt we give an account of Woolcock's calculations “’, and other

determinations, of the parameters of low energy pion-nucleon physics,

(3) W.S.woolcock, Ph,D. Thesis, Cambridge University (1961)
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Various improvements are made in the original calculations., The parameters

are the coupling constant fa, the s-wave scattering lengths a4, s the

83

p-wave scattering lengths , and the curvature constants in the

Sarr2g
parametric form for the low energy s-wave phase shifts. The calculations
are based mainly on the use of forward and fixed momentum transfer dispersion
relations for various pion-nucleon scattering gmp.itudes (these are really
sum rules)., The dispersion relations are evaluated by using the considerable
amount of accurate experimental data which is available on the total nt-p
cross sections, and the reliable information which we have about the
resonances of the n-N system. An effort has been made to give a careful
assessment of the errors in these determinations of the parameters.

In .é 5 the fixed momentum transfer dispersion relations are used to
predict the s-wave and p-wave pion-nucleon phase shifts at low energies.
The method is an impr:ved form of the CGIN calculations(a); all recoil
and relativistic effects are included and only the f-waves (and higher)

(3)

are ignored. Again the original calculations are improved in various
ways and a careful assessment of the errors is included. The input data
is the same information about the total cross-sections and resonances as
is used in jS L,

The main limitation on the method is the convergence of the
inverse of the Legendre series which, as was mentioned above, is needed to
deduce the partial wave amplitudes from the calculated scattering
amplitudes and their derivatives with respect to momentum transfer.
As the energy increases, the domain of convergence becomes smaller
and the rate of convergence of the inverse series deteriorates rapidly.

In practice this means that the corrections due to f-wave, g-wave, ...

terms, which we ignore, bec me large, and further, errors in the results
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due to inaccuracies in the d-wave subtraction term (in ome of the A(+)
relations) can be troublesome., A complete and (we believe) accurate
prediction of the s-wave and p-wave phase shifts is possible up to about

120 MeV (lab) energy, and the results are in good agreement with the
accurate experimental values which are available., Above 120 MeV we

can only predict certain special combinations of the scattering amplitudes.
It is expected that the rate of convergence of the inverse series in

the (=) charge combination is good up to around 300 MeV, and the
corresponding partial wave amplitudes turn out to agree well with

experiment in the p-wave case. For the s-waves the results in the (-)

case up to 300 MeV should be reasonably reliable. Another special case

is the fa ~ amplitudes which again avoid the difficulties just discussed, up
to around 220 MeV. The relation between these two special cases and our
knowledge of the pion-pion interactions is discussed fully.

(11) Kinematic Invariants and Invariant Amplitudes

We shall use the notation of CGIN(Z). The S-matrix elements for

elastic n-N scattering can be written

) . . 1’ oo

where 5f‘ = 0 unless there is no scattering (then 6{» =1).
E1, EZ are the initial and final nucleon energies, and P, P, are the

initial and final nucleon energies, and P,1 P, are the corresponding

Lavector energy-momenta. uq, ué and 9,9 q, are the same quantities for

the initial and final pions. t,and (4, are the initial and final
spinors for the nucleon, normalized so that (for nucleons) (;1 U, = (221(2=1
M is the nucleon mass and p is the pion mass.,

The & x 4 matrix T is a lorentz invariant(h)

(b Strictly it is aa T w, which is invariant

It can be expreesed as a function of the kinematic invariants, which in
turn are formed from the three independent lL-vectors associated with the
scattering. These are

e«-’%(ﬁ'*'/’t)ﬁ ) Q/‘osli{il*it)/«_) A/«= -?,.(ZI-‘il),«
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Two independent invariants (apart from the masses) can be formed, and
it is convenient to take

P,
y= - &8 te -4A° (2)

We can write T in the form

T= -A+ i Y.QB (3)

where‘y.Q z )”“Qu and A, B are scalar functions of the kinematic
invariants y , t. The quantities )’ and t between them specify the
energy and the scattering angle. It is easy to deduce from (2) that

t = - 2q2 (1 - Cos ©)
(W)
Y= Wl + b
where (U, is the energy of the incident pion in the lab, system, q2

is the square of the momentum of either particle in the c.m. system,
and ® is the scattering angle in the c.m. system.

It is sometimes convenient to use the pair of kinematic
invariants
)2

2
o ==(p, + q, v t= -(q-aqy)

Evaluating $ in the lab, system we find

s= M4 ua + 2Mw, (5)

= M ua + 2My - t/2
(5

The variables s and t are used in the Mandelstam representation’”’,

and it is often convenient to use also a third invariant . defined by

(5) S. Mandelstam, Phys. Rev. 112, 1344(1958), and 115, ;741,1752
(1959

S+t +u =M+ Zua (6)

so that
u = MZ + pz - 2My - t/é ' (6a)
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(1i1) Charge Properties

It is customary but not necessary to assume charge independence
in analysing the amplitudes. A and B are then 3 x 3 matrices (Aag ),
(Bap ) where a, g = 1,2,3 are the pion charge indices. By charge
independence we can write

Ago = A(+)£ﬁa ) i 7]

(7)

(+) ; - cre e
Bga= B Yoga + B w75, T
where 1fa( o= 1,2,3) are the 2 x 2 isotopic spin matrices for the
nucleons., Clearly A(+), B(*) refer to the parte of (A<3a) (B43a
which are symmetric in the charge indices (a, 8 ), and A , B
to the anti-symmetric part. No transfer of charge between pion and

(+) o(+)

nucleon occurs in the A" ’, B parts, so they do not require any T
matrices.

(M) (T

The amplitudes A*"’, B

spin eigenstates T = ¥%, ¥/, are related to A(- ), B*™’ by
A n AR () A9 (+)

for w=N scat&erihg in isotopic

+ ZA(-)
(<)

+-7/A = A

(8)

RO IR RN NN C A BN O

= A - A
Identical relations hold for the B amplitudes.

We can avoid relying on charge independence (cf JS b(i)(e)) if
we define A( ~) B(') in terms of the amplitudes A , B_ and A_, B_
which describe the elastic scattering processes n++p - a4+ p and
% +p —» ® + p respectively.

It is easy to deduce from (8) that
Al WA, +A) A . %(A_ - A)

(9)
B e, +8) 3= we_ - B,)

+
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If we do not wish+to asgume charge independence we take (9)
as the definition of A(-), B(')
happens mostly in practice, since for elastic n-N scattering in general

we only use experimental resulits on xt o+ P - xt p and

. This indeed corresponds to what

% +p—> % +p scattering.
(iv) Crossing Symmetry
let the scattering amplitude for the process in equation (1)
be written <p2, L A | T | Pqr Qqs a> + Then Low's expression
for this quantity in terms of Heisenberg ope:.ators and real state vectors

shows the symmetry property(e)

<P2' 4, ﬁ ’ T | Pq1Qqs “> =< Pa';q1’ a’ TIP1, -q2.5> (10)

(6) See for example J. Hamilton, Theory of Elementary Particles,
(Oxford 1959) Chapter VI, para. 5

This replacement q, 4> =9, a¢>/3 leaves Pu and Au unaltered
and reverses Q ( Qu'"> -Q'M)' Thus it gives

V - -V 1] t b 4 t, (11)
and by (5) and (6a)

S % u , t - t, u —» 8 (12)

Remembering that A(+) is the symmetric part of (A GG) we get
(from (10) and (3) and }.Q = - 4-Q)

A Cye a0, By, v = B0, -
13

B(‘)(.v, t)

A ey ) = a0, v, B,

Again, we can if we wish, derive thé crossing relations (13) without
using charge independence., From equation (3) and definition (9) we
have

) T, +T) ) - W - T,) (14)

where '1’+ and T_ are the amplitudes for x4 P >4 p and
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X +p ~> % +p respectively. The crossing property follows
directly from low's relation, It relates physical st o+ p scattering
to unphysical n~ + p scattering and vice versa. We have,

{pov 0y 1T, [ gy 20> =rpr =9y | T 20 1>

(15)
Kepaz | T 1 Ppayd> o (P -aq [T, | Py =)

Thus by (14) T(*)(- Y, t) = T(*)(y 'ty T(-)(-))Jt) = -T(')(V t)
Now using (3) we obtgin (13)
(v) The Dispersion Relations for A and B

We are here only interested in dispersion relations for fixed
momentum transfer t. The positions of the singularities are easiest
expressed in terms of the invariants s and u (eqns (5) and (6)). There
is the single nucleon pole at s = N? (the Born term), and the corresponding
crossed pole at u = M2, There is the physical cut 8 > (M + u)a and the
crossed cut u 3 (M + u)z. By (5) and (6a) we express the positions of
these singularities in terms of )/ , Using Cauchy's theorem and egn (13)
in the way indicated in ~§ 2(i) below and Fig. 1 and ignoring for the
moment any questions about convergence, we get the dispersion relations
for fixed momentum transfer ¢t.

(2)

These eqns, which were first written down by CGIN' ™, are

(t) 4
ReAlne) = & ij ds' Tom A“/y;c)(-,L- L) e
y'- ¥ ’

At Yn

R‘Bd"w’ﬁ'wy‘*w»)+ pjdy j/”J/' ’+v)(1?)

wt Gon

Here ‘VB= - %ﬁ + uﬁ is the position of the nucleon pole, and Gi
is the rationalised renormalized (Watson-Lepore) pseudo-scalar coupling
constant. The Born termes in (17) are calculated by second order

st o
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perturbation thegig. The reason why they appear in the B(:)equationa
but not in the A'~’ equations is that at low energies the pseudo-scalar
n-N interaction is equivalent to a pseudo-vector n-N interaction. This
latter type of interaction must involve the nucleon spin o 4 s0 it can
contribute to the JKQ term in (3) (i.e., to B), but not to A.

(7

It has been proved (assuming microscopic causality and the

usual asymptotic axioms of field theory) that for fixed t, such that

0g -t & & - S -2 g2y

+
the above enumerated singularities are the only singularities of A(-)(u,t).
B(-)(y st). To establish the dispersion relations (16) and (17) (or

subtracted versions of them) for these values of t, it is unly necessary
to examine their convergence properties; this will be done in 5;2.

(7) H.J.Bremermann, R. Oehme and J.G.Taylor. Phys.Rev. 109, 2178 (1958);
H. Lehmann, Nuovo Cimento 10, 579 (1958)

(vi) Partial Wave analysis
We now set down the relations between the invariant A and B

amplitudes and the usual partial wave amplitudes. From (1) it follows
that the differential cross-section in the c.m. system is

49'—(”)22[821'1; 2 (18)

dan =\ TxW 1,

where I denotes the sum over final spin states and the average over the
initial spin states. Also

;

W o= (M2+q2)1)'+ (_v.z+c12)'/1 (19)
is the total energy in the c.m. system, Clearly Uz = 8.

We can also write the differsntial cross-section in the c.m,
system in the form
W o=z I<einia>? (20)

where [i> and |f> are the Pauli spinors for the initial and final
nucleon states, M is commonly written in the form
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10.
M =f(o)+(g.g)g(e) 21)

where @ is the c.m. scattering angle and n = 32 xq, /' 9, X q,‘: is the
normal to the plane of scattering. f(9) and g (@) are the no-flip
and spin-flip amplitudes respectively. A more convenient form is

Me=t, @ + (T8N L 3 e (0 (22)
929

The relation between (21) and (22) is

£(0) = f1(0) + Cos © f2(°)
(23)

ig(@)= Sin @ f2 (e)

The form (22) connects directly with the helicity amplitudes(s)

Denoting the nucleon's helicity by subscripts + or -, we have

(8) M. Jacob and G.C.Wick, Annals of Phys. 7, 4O&k (1959)

My, =0 i, > » (£, +8), M = I |14, >. (L, ~1,) etc.  (238)

+ .
where the subscripts - denote the helicity, and | ii > f: > are

the spin state vectors. Using |f> =exp(-i oy ¢/, -
exp(i ”:/ 8/, ) expli ¢ ¢/2, ) | 1> gives
<t 1 4,> =<f | i> =Cos(6)
(23b)
<t > =- e-i(pSin(GI),) E L i) = ei¢ Sin(e/;)

From (18) and (20) we relate M to T in the c.m. system by the convention

~-M
<f'Mli>=W uzTu1 (24)
Using the representation in which

%:(; s;:)) /‘*_ﬁ__.(é_o' )!=-,b%=(o,;z)

-igl o
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the Dirgc (4-c>mponent) spinors U,y u, can be expressed in terms of the
Pauli (2 component) spinors |{i> |, It> by

w o= M-tyA (lo) &,= (<41,0)) CM-LYh (25)
) J

()'1(& +H) ()H/L' +'ﬂ),”

Substituting (25) in (24) we relate M (eqn. (22)) to T (eqn.(3))
A little elementary manipulation gives

f,= gt [ A+ MR (26)

£,= St [ -a e (wa)B ]

2, 2y
Here E = ( M° + q°) “is the energy of the nucleon in the c.m, system.
In connection with (26) it is useful to notice that

+ ,\2 2
Etum = (W= M)~ - p (27)
2w

Substituting (27) in (26) and using (5) (and W = 8) we can express
21 and f2 in terms of the invariants s and t, or )/ and t.

The conventional partial wave expansions are

fte) = {/zu)fe +8f, } Rl
q6) = < Ell{fa -fc-} PU () | (28)

where 4 = cos ¢ and Pl (w), Py (1)(;&) are ordinary and associated

Llegendre polynomials, b3 £+ are the partial wave amplitudes(g). and in
the elastic region f 1+ c 1£€* Sin gy /q. Using the relations
p(') /
2 (#) = 8in@P, (W) and
/ !
¢ +)p = P,,, - VWP o
29
F) 14
47 = w -p,

eqns,(28) and (23) give
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(30)

fier = Z (fo -£.) B'w

(9) fe! and &lt are the partiasl wave amplitudes and phase shifts
for the states with orbital angular momentum £ and total angular
momentum j = £ I % respectively.

The orthogonality relations associated with (30) are

! /
I,d/“'@(/“’){enfﬂ-)*e—/’/“)}={,e
They give

[)
7[(: = f,[ld'“i(e(’df + "?:/”““{}

(vii) Laboratory System Relations

We use q and q,  for the c.m. and incident lab. pion momenta.

We always use E and W to denote the nucleon energy and the total energy

in the c.m. system. The (total) lab. energy of the incident pion is w, .
Then we have

q, w

T ° N (1)
and

Wy, =Mﬂ -M (32)

The forward scattering amplitudes f, (q, , 0), f(q,0) in the lab, and
c.m, system are related by

f‘_ (qL ’o)/q‘- = f(q.O)/q (33)

The forward amplitude in the c.m. system is deduced from (23)
(26) and (32), It is

£(q,0) = g (A + «,B) (34)

e PTERR BRI SR
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By (31) and (33)
£,(a, 0 = 1= (A+ w, B) (35)

For the real part of the forward scattering amplitude we shall

use the notation

D( w, )
Dp(‘w)

Re f‘_ (qL, O)
Re £ (q,0) (36)

As a special case of (33),+the threshold, values of the scattering
amplitudes D . (u‘) for n= - p scattering are given by

1+
D, () ¢l

l3

(1+%)}3(2a1+a

(37)

D_(n) )

3

where a, and a3 are the s-wave scattering lengths in the isotopic states
T = % and 3/.2, « Finally, the optical theorem can be written in two forms.

Inf, (q_,0)= 1, . O tot
T (28)
Im £ (q,0) = f= O tot
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2. BSubtractions, High Energy Behaviour and the Sum Rule

From our knowledge of the positions of the singularities of
a scattering amplitude as a function of the energy we can, as in eqns(1,16)
and (1.17), set up a dispersion relation merely by using Cauchy's Theorem.
However, this relation will not be valid unless certain high energy
convergence conditions are obeyed, If these conditions are not
satisfied, one or more subtractions must be made in order to obtain a
valid dispersion relation. Since it is particularly necessary in making
numerical applications that we are sure that we are using valid dispersion
relations, we shall examine carefully the problem of the number of
subtractions which is required.

In order to apply these general ideas in any particular case
it is necessary to know the high energy behaviour of the various terms
in the dispersion relation. This presents us with two somewhat difficult
problems; (a) the mathematical question of determining the limiting
behaviour of principal value integrals, (b) the physical question of
conjecturing the asymptotic behaviour of scattering amplitudes.

In the first half of this chapter ( 52(i) - 2(v)) we discuss
these problems with particular reference to forward & -p scattering. It
is convenient to do this because o£ the considerable amount of information
which is available about forward n -p scattering. We include some
discussion of two interesting features which are associated with the high
energy behaviour; Pomeranchuk's theorem, and the sum rule, In the second
half of the chapter ( ‘§ b2(vi) - 2(ix)) we examine the high energy
behaviour of the amplitudes A(s,t), B(s,t) and the question of what
subtractions are needed in the dispersion relations (1.16) and (1.17).

The reader who finds these discussions of subtractions and high
energy behaviour to be tedious can ignore this chapter (except for 9 2(iv)
on the sum rule). All the dispersion relations used in §‘§ 4k and 5 have
the correct number of subtractions:

(1) Additive Polynomials and Subtractions

When the integral in a dispersion relation (like (1.16) or
(1.17)) does not converge the usual procedure is to subtract, i.e., extra
factors are inserted in the denominator of the integral until convergence
is achieved., This automatically produces an extra polynomial - the
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additive polynomial - on the right-hand side of the dispersion relation, as
can be seen from eqn (3) below. Strictly speaking there are two distinct
features here, In a dispersion relation of the usual type like (1.,16) or
(1.17) the number of subtractions is determined by the behaviour of the
imaginary, or absorptive part of the scattering amplitude at high energy,
whereas the degree of the additive polynomial can also depend on the
behaviour of the real, or dispersive, part of the scattering amplitude at
high energy.

Let f(s) be a scattering amplitude, where s is the energy or
a function of the energy; f(s) can be the forward szggtering a?B}itude, or
it can be any linear combination of the amplitudes A' '(s,t), B' ’(s,t)
(for fixed momentum transfer t) defined above in §‘h

We know that f(s) as a function of & has cuts along - @ &£ 8 & 8

o)
8, € 8 & w0 and we derive a dispersion relation for f(s) by writing
oA f(s') '
£(s) = 3= fc ST ds (1)

where C is the small circle about s sh:wn in Fig.1.

Next we blow up the contour C until it is replaced by contours
around the cuts as shown in Fig.1 plus C_., , the circle at infinity in the

complex s~plane. The integral around the infinite circle

2ni c. 8'-s

may not converge, and if this is so, we have to replace it by an additive
polynomial.
(10) that for [&8] — 20 , ‘f(s)’ < sl N—E‘

where N is a positive integer and & is a small positive number.

Suppose

Define the function g(s) by

N -1
8(5) = f(S) ' )

j=0
where sj(j=0, 1, ees N=1) are real constants. Starting from the Cauchy
integral

(s-sj)

g(s) = E%Z d{;—g;gél ds'

(10) A sipilar argument was used by J.Hamilton, T.D.Spearman and
W.S.Woolcock, Annals of Physics 17, 1 (1962) (see VB)



16.
we get the dispersion relation

N-1
gls) = -l-—[ éﬁé%:L—dsw Z —d

ri a'-s (2)
(Cuts) =0 3

where A g(s') 1is the discontinuity in g(s') across the cut at s'.
The terms “j /(s-s j) arise from the poles at 8 = s, which we introduced
in the definition of g(s). There is no contribution to (2) from the
infinite circle G, , since |g(s)| goes to zero faster than .fsl't
(where E > 0) a8 | 8| - 00 . The numbers aj(j = 041y oee N - 1) {which
are independent of s ) are not determined by the dispersion relation
itself; they represent physical information (scattering lengths etc.,)
which we must insert before we can evaluate the dispersion relation.

From (2) we get the dispersion relation

£f(8) = A +A.8 + ...+ ﬂ(s-s) j _ME_L__
° 1 AN-‘I cuts) (s'-a) (s'-sj)
LS IS

where Af(s') is the discontinuity of f(s') across the cut at s',and
Ao'A'l . e AN are arbitrary constants (they will in genera_]: be functions
of the momentum transfer t). If N = 1 the polynomial on the right of
(2) reduces to the constant f(s ).

We assumed above that the complete amplitude f(s) obeys the
inequality [f(s)f < lsr'x as |s|-» o0 for real or complex s. It may
happen that on the real axis Af(s) (which is in general the imaginary part
of f(8)) obeys the stronger inequality |Ai‘(s)l < I8l (N -8) (11) s—» oo
where £> O and N is zero or a positive integer, with N 4 N. In that
case we get a different dispersion relation., By successive use of

(11) The notation s =» ¥ ©@ always implies that & goes to
infinity along the real axisa.

the relations
1 . 8 -8 4 1 1

8! - 8 a’-sdg s'- 8 'a'-aj

eqn (3) can be written in the form
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N'-1
' Atfls")
f(s) = Al+his+ ... +At'€-1 ani vz=— [ T(s- s‘) ds N
j=0 (cuts) (s'-s) rf (s'-s8,) (W)
o0
where A'o, A"l .« oo A}'{-1 are arbitrary constants. If N' = O, we must
replace 1o N'-1
7 (s-5 ) and T (s'-sj) by unity. Letting s tend to the
J=0 j=0
upper side of the physical cut“a) gives the dispersion relation

(12) The physical value of an amplitude is always defined by its value
as s moves in to the upper side of the physical cut.

N'-1
Ref(s):-.A")+A,"s+ oo rthy 48 N-1 T rT(s—s )PI A £(s) 5)

j=0 (cuts)(s' s)n (s'-s )
=0

The number N' of subtractions which are required in the integral
in (5) is determined by the experimentally known behaviour of 4 £(s)

(i.e., of Im f(s) ) as 8 => % © . The number N is given by the behaviour
of |[f(8)] as lsl ~»o0, However, N can be found in practice as
follows. We find the asymptotic behaviour of the integral in (5) as s> %2,
Using eqn(5) and the known experimental behaviour of Re f(s) as s -» e
now determines the integer N. There appears in general to be no a priori
reason to assume that N = N'.

We shall show in the following sections how this method is
applied in various practical cases. A somewhat awkward feature is the
determination of the asymptotic form of the dispersion integral as s — leo
and we shall quote several theorems ¥hich are of value for this purpose.
(ii) Theorems relating to forward m -p scattering

We first show how the problem of subtractions and high energy
behaviour can be treated for forward scattering. Let D+ ( (.u._) be the

.'-
real part of the lab., system forward scattering amplitude for =~ + p at

lab.(kinetic) energy ( &), -p). From eqns (1.35),(1,16) and (1.17) we can
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write down the once subtracted dispersion relations

D,tw) = L1+ %) Dusi + - Do £ ’-t A, L,

A A,
M)
) w)
"“J.P““/[ Gptw) ]
4t (m’-wd Iw+WL)
+
Here (w) are the total cross sections for m~ + p at lab (kinetic)

energy ( w -u.) and q = (w 1. 2)7é is the corresponding lab, momentum,
Also g = (ai B ) , and f = Gu/2M is the equivalent pseudo-vector
coupling constant. [Up to § 2(v) we shall frequently use “, W, u)1
and in these sections they always denote the lab, pion energy]

We shall now show that the single subtraction and the first
degree polynomial ineyn. (6) are sufficient. For this we must know the
high energy behaviour of ff_'( W) and D+(w)/w and the asymptotic
behaviour of the integral in (6) as (uawmo . The mathematical
techniques which are required are neither trivial nor are they

particularly well known, and we shall state the most useful genei-

(=)

thgorems. The same methods are necessary for discussing the A' “and
B(') dispersion relations in !S}’)Z (vi) and (vii) below.

We can obtain a rough idea of how the principal value integrals
in eqn.(6) behave as W -» 00 by using a basic theorem on Hilbert

transforms.

(13) E.C.Titchmarsh, Theory of Fourier Integrals (Oxford 1948)
Theorem 101.

et L b (~#0 , 20 ) denote the class of real functions f(x) such that
o0

ax {f(x)¢ P ( p>0)
exists. Then we have(13)
Theorem A If f£(x) belongs to LP (-00 ) where p » 1, then the
formula

o0
1
glx) = = P 1) dy (7
- 00 J=x
almost everywhere defines a function g(x), and g(x) also belongs to
LP (-0 ,00 ). Further, g(x) and £(x) are Hilbert tranaforms of each



19.
other.
We apply this theorem to the integrals

oD
g, (ui) = N dw' og(w')
: T i w' iw (8)

L
B

where ¢ ( w') represents either of 0'+(w'). So in the g _case we
take -

- g(-w")

flw') = q' v W' -u
0 v w' >
and in the g_ case
Gg{w')
— W s W
q' '
f(w') =
0 y W < B
Restrictions on the Cross-sections 0; (W) The cross-sections 0’+(w)

are continuous functions of w , and we shall also assume that they
have bounded derivatives with respect to &w . This means that the words
'almost everyshere' can be dropped from Theorem A, (i.e., g+(¢uL) are

everywhere finite) We also make the very plausible assumption that

0+(w) are bounded as (y —> oo .
With these assumptions, f( w ) is in Lb ( ~oc,09) with(ﬂ)
l< p < 2. New Theorem A shows that g+(wL) is in LP (-a0,00), The

consequences are important. First, it is necessary that

(4) For (v'= ¥, f(w') ~ 0‘{211(‘0 Tep) } -¥ sop > 2 1is not possible.
If necessary the restriction p €« 2 can be removed by writing f(w') =
T(w')- gp) . o'(w) . The second term can be evaluated explicitly,

q' q'
and for the first, 1¢ p €00.

g (w)>0as w oo, Next suppose that |g(w;)l behaves like

WL'A(fn wy, P as W) -> 0o, where n is some integer. Because g( WL) is
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in IP we must have A> 1/p. Also p can take any value in 1 ¢ p< 2.
Thus |g(w )] ""L 7,0 as W -> oa where n is any small positive
number. The functions /ML' ¥4 nw)/w (lnu ) /wL, etc.. are
therefore possible examples »f the behaviour of g( wL)

The restriction that ¢ +(W ) should have bounded derivatives

is convenient but is not necessary. We could include the case of cusps

in c:(w) by using Theorem 106 of Titchmarsh“”. This states that g(x),

given hy egn.(7), exists for all x and belongs to L’ (-0, 00 ), provided
£(x) belongs to L’ (-e0,00)(p> 1) and obeys a Lipschitz condition.

[fx + h) - £(x) | < m*
uniformly in x as h—» 0., K is s>me constant. Also g(x) obeys a

Lipschitz c-ndition with the same @ . Taking a = ¥2 we can include
(15)

any cusps and we see that in this case g+(w L) are continuous.

(15) We assume that all cusps in C-, are of the square root type, hence

the choice a = %.

Asymptotic Behaviour of Principal Value Integrals

We wish to be able to make more definite statements about the
behaviour of g+(luL) (eqn. (8)) as w > oo, This can only be done by
imposing further restrictions on the behaviour of 0’4_(“)) for large W .

First consider g(x) given by eqn(7). It might be thought that,

f:;y) dy
- .

1 O
glx) =» - =— /f(y) dy, a8 x -> o (9)

nx_w

provided

converges, then

This is not true. To ensure (9) further conditions must be imposed on
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£(y). Sufficient conditions are (16)
w -
- (1) {‘f(y)l dy and f £(y) dy converge

- 00

(ii) Given E > O, there exists a V such that

—I
y-x (x)*
forall yz x»V

y £ly) - x f(x) !(_ b3

(16) We are indebted to Messrs D, Atkinson, P.Menotti, G.C.Oades and

L.L.J.Vick for this statement of sufficient conditions.

These conditions are satisfied by simple forms of f(y), such as £(y)~ y-tiel))
as ¥y —» oo where 5> O, but they are not satisfied by eertain
oscillatory forms of £(y).

In fact eqn(9) is not particularly useful here, and we use
several other theorems to find the behaviour of g(x) as x> wo Now
we quote a standard theorem on the limiting form of a principal value

integral with a finite range of integration (we alsc need this theorem

in another connection below - cf § L(iii)).
Theorem B(17) Let
1 .
. y-Xx
-1

R |
where f(y) is in L' (~1.1) (p > 1), and suppose that near y = 1

£(y) = A (1=y)"% + x'L(y). (O0sca<1,) where A is a constant.
Also t,l«(y = 1) = 0, and near y = 1, Y (y) obeys uniformly the Lipschitz
(or HBlder) condition

(VD -y )| < Kyl

where K and E are positive ocnstants., Then as x -»1,

£

g(x) = -A cot(na)(1=x)"% +()(1), 1f 0< a <& 1;
and
g(x) = 2 Adn(1-x) , if a = O.
(17) F.G.Tricomi, Integral Equations, Interscience N.Y. (1957) Chap.k.

A A Uit i Al AR 1o n 11
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See also N.I. Muskheliskvili, Singular Integral Equatioms, Nordhoff,
Groningen (1953) Chap.l.

Transforming one end point to infinity we have a theorem on
the asymptotic behaviour of eqn.(7).
Theorem C Suppose that as Y e (2

-1+ o

f(y) — Ay + F(y) (0% a< 1)

where A is a constant and yF(y) - O as y —»o0 . Also we require(18)

that for any large y and ¥,
b
1 1
/yF(y) - yoF(yo)I <K ‘ y yol

where K and & are pusitive constants., Then as x — oo

(18) This is an adaptation of the HYlder condition which is in general
required in some form to set bounds on a principal value integral.
(19) See also H.Lehmann, Hamburg University Preprint (1961) on the

Asymptotic Behaviour of Dispersion Relations.

g(x) - =-A cot(ma) x~ e, B(x)/x , if Oc a < 1,

and A fax  B(x)
n X x

glx) » - y if «a = 0,

(19)

where B(x) is a bounded function.
The special case of a = ¥ should be emphasized; it gives g(x).-;B(x)/x
as x -» 00 (where Bgc) is bounded). Also note that in this case (as for

alla 3 0) ff(y) dy does not exist.
Application to_ the D+ (wL )__Dispersion Relations

We apply Theorem C to the integral in eqn (6) (or eqn(8)). We
assume that 07 (w) and ¢ _(w) tend to limiting values ¢, and o,
as W -» 00 « Further, the HBlder condition requires that these limits
are approached in such a way that

3
1 1
[0, @) - oy tw) ] < K!“—"'Jol (10)

where K and ¥ are some positive constants, and W, wo take all large
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valucs. (We shall return shortly to discuss these limitations on

O'+(w) ). Now eqn (6) is seen to have the asymptotic form(ao)

-
D: (wy) ~ +;;2—(0'+ -0) wy hwy, as wi oo, (11)

provided s, - == O. This result will be used in the derivation
of Pomeranchuk's Theorem in SS 2(iii) below.

(20) It is easy to show by standard methods that

e (71( w')
fdmi ~ 0, ( ' We, )/“)L a8 Wy -> wo,
\ q' wl +wL -

Several comments should be made here, First, suppose that we

are not allowed to assume that O~ (w) ) tend to limits as w -> oo ,

but merely assume that 0':(0) ) are bounded as &w-» o0 . Then Theorem A

applied to eqn(8) enables us to infer that g (W,)=» 0 asw, -> oo .
+ L L

It follows that the last term on the right of eqn(6) cannot increase‘zﬂ

as fast as wLa when Wiy =y 0.

(21) The same result is true under the much weaker condition that
0;(‘0) W "M",0 a8 w > oo where h» 0. This follows

from Theorem A and the method indicated in footnote (14).

Next, we look at the condition (10) which was required in
applying Theorem C. Letting W, -» o0 We Bee that (10) requires that
d’+(¢u) should approach the limit ¢, at least as fast as some
fractional) power law, that is (writing (= for o or ), O(w)- 0 (e0)

A (22)

v K" (N> 0), as wyor . However this is not sufficient.

We actually require that

(22) Thus (10) is not satisfied if ( ) approaches ( ) as slowly as
( )1,

o(w ) -o(so0) = & "w{(@ , a8 () =» ¢ (12)

where  (w ) -> O as w -» 0o  asd J (w) itself obeys (10) for
some 8) C.
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The estimates of high energy behaviour which are derived
from the analogy with Regge poles are referred to in §2(iii) below.
They suggest that:(a3 )

(23) See for example B.M. Udgaonkar, Phys.Rev.Letters 8, 142(1962)

K K

T(w) -0@) = = + =2, ...+&n’ as w-» oo (13)
wt1 Wt o

where K1, o 0. Kn are constants, and Byr o o o W are positive
constants which are less than unity. This high energy behaviour satisfied
condition (10)., In what follows we shall in general assume that

O+(w) do obey ayn (10).
Behaviour of Dt( wL) as  W;=> 6o

If the n-N interaction has o finite range R, then assuming
that little scattering occurs for angular momentum values —{7 > qc.m.R
it follows (as in §2(vi)) below) that D+(wL)/wL is bounded as W = oo,
This is the final step which establishes the validity of the dispersion
relations (6)., The additive polynomial cannot contain a term in wLa,
because, as we have just seen, provided 0:_(«.)) are bounded as wW->00,
no other term in (6) can increase as fast as W
In fact there is good evidence for the much stronger
statement D+(wL)/wL-v 0, as w;—» o . Cool, Piccioni and Clarke(au)

found that the forward c.m. scattering amplitude f. (LOL, 0) for n -p

(24) R.Cool, O.Piccioni and D. Clarke. Phys.Rev. 103,(1956), p.1082

scattering obeyed the relation IRef_( Wy, 0] <« | 1Im £ ( tuy, ol
in the range 1 to 1.5 BeV., The result comes from comparing the
differential cross section extrapolated to the forward direction,
'd—g (8 =0 =Jf_(w, 0 12 with the total cross-section 6. (wy) by

d
using the optical theorem (1.37).

An experiment by Thomas‘2>) on n -p scattering at 5,17 BeV
gives :%(9 =0) =29.8 mb/ster. If we assume that Ref_(wL,O) =0
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this gives (L (5,17 BeV) = (29.1% 3)mb. which is in good agreement with

the direct measurements of ¢ ( wL) (cf Fig.2). There is also experimental

evidence at higher energies that Re !_( wL, 0) is small.(26)

(25) R.G.Thomas, Phys.Rev. 120 (1960) 1015

(26) See Proceedings of 1962 Conference on High Energy Physics, CERN,
for details.

We shall assume that

Re £ _( w, 0

)
)’-90, as u)L-soo (14)

Im £_(wp,0

Assuming also that Cf( wL) is bounded as w -» 0o , the optical theorem
(1.38) now gives
D (w;)/w -> 0, a5 w =+ 00 , (15)

(where D_ ¥ Ref (¢, 0).  The data on at - p differential cross-
sections is not at present so good, and we cannot directly deduce from
experiment the relation analogous to (15)S27) However, it is shown in
§ 2(div) below (eqn.(26))that, from (15) and some general properties of
the dispersion relations (6), we e¢an deduce

D+(“’L)/“’L -0, as W -» 0C. (16)

Further evidence in favour of (15) and (16) comes from

evaluating the dispersion relations (6) at high energies. Our discussion

(27) See however reference (26)

(28)

above showed that the relations (6) are valid under very wide assumptions
about the high energy behaviour of 0‘+(w ), and from now on we take them
to be true. Inserting the known values of the scattering lengths and
the cross sections O, (W) in (6), the amplitudes Dt(“’L) have been

(29)

evaluated up to about NL = 2.5 BeV. The results indicate that

(28) Namely that o;(w) do not increase faster than @

and that | D (¥)/, | do not increase as fast as w .

Twhere N >0,



26.

D+( wL) are almost constant above 1.8 BeV.

(29) See, for example, J.W.Cronin, Phys.Rev. 118, 824 (1960)

(iii) High Energy Consequences of the Forward Dispersion Relations

Pomeranchuk's Theorem We have seen that the dispersion relations (6)
give the asymptotic form (11) for D+(w) provided t';(w) have limiting
values 0 as W-» 00 , and provided (}’+(u)) approgch these limiting
values so that condition (10) is satisfied. Now comparing (11) with (15)
and (16) we must have

Cy = U- { = O(>0) ) i (17)

(20)

This important result is Pomeranchuk's Theorem « Towards the end of

this section we shall derive it under less restrictive assumptions about

Ts(w),

(30) I.Ia Pomeranchuk, Soviet Phys.JETP 34, (7) 499 (1958)

In Fig. 2. we show the experimental data on ¢ (W) and g (w)
in the range 2 BeV to 20 BeV. Two facts appear to be established:
(a) the cross-sections O;(w) and ¢ («) have not reached their limiting
values at the highest energies yet attained, (b) the difference ( 0 (w)-g(w) )
is decreasing very slowly with increasing w) in the energy range cousidered,
and it is not zero at the highest energy attained.
The Rate of Decrease of (& _(w) - &, (w) )

We can try to use physical arguments to determine how fast
(0_(w) - 0(w) ) goes to zero, First, there are the early arguments
of Pomeranchuk 31 based on charge exchange processes, These state that
above some energy w, (which is of the order of a few BeV.) the phase

spacefor the charge exchange process © + p —p 2° + n is much smaller

(31) I.Ia, Pomeranchuk, Soviet Physics, J.E.T.P. 3 306, 307 (1956)
also S.Z.Belenki, Soviet Physics, J.E.T.P. 6, 960 (1958)

than the phase space for all other inelastic processes originating from
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n + p. Therefcre, for w>» wo , the total cross-section for
T +p .)no i n within the forward diffraction cone, is a rapidly
decreasing fraction of the total cross-section O (w). Also the cross-
section for elastic scattering m + p —» % + p within the forward
diffraction cone is an appreciable fraction of o0 (w). Thus (in the
notation of (1.14) and (1.23) we expect

189,601/ 1 £, 8 =001 = 0, as g >e0, (18)

In particular by (15) (16) and the optical theorem, we expect O (W)~
0'+(w) to fall to zero rapidly for w>w.

The Regge Pole Estimates

As we have seen, the rate of decrease of |& (w)- 0_;(«1 )}
appears to be slower tham this crude model would indicate, It has been
(32)

suggested that this is due to a considerable amount of coherence in
the exchange processes involved in high energy forward scattering, and
that the difference (O (&) - 0;(“’ )) is due to such effects associated
with the p -meson isobar (T =1, J=1, 2rn isobar). If, further, the
Regge pole meth>d is used, the rate of decrease of (7 (ew) - o';(w)

can be estimated, From eqns.(35) and (36) of ref (33) we can find

the effect of the exchange of a mesonic isobar of angular momentum J

(32) G.F.Chew and 5.C.Frautschi, Phys.Rev.letters 7, 394 (1961) and
8, 41(1962), B.M.Udgaonkar Phys.Rev,Letters, 8, 142,(1962). We are
indebted to Dr. Udgaonkar for information about his results before they
were published.

(33) J. Hamilton and T.D.Spearman, Annals of Phys. 12, 172 (1961)

upon the amplitudes A(y,t), B(W ,t) “or small values of t and large ¥ .
We have |A(y, t) ]| ~ VJ, [BC ¥ ,£)] ~ »9=1. If the mesonic isobar
is to be treated as a Regge pole, we replace its spin J in these relations
by a(t) where 0 < g(t) < J.  Thus, using eqn(42) below, the differential
cross-section for © +p —p n + p small angle scattering at high
energy obeys

ag , Jfalt)=) 5 s (19)

Q
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where t ( € 0) is amall, and a(t) is a slowly varying function of t.
Note that V¥ = Wy + t/‘+M and df2 is the c.m, s11id angle. By the
optical theorem this gives the total cross-sections.

(a(0)= 1)
Oiot ~ v 8B Wp > 00 (20)

It is proposed(Ba)

that the high energy behaviour of the
cross-sections is given by the vacuum pole which has a(o) = 1, plus other
poles each having 0 « «(0) € 1, so that the cross-sections are of the
form shown in eqn (13) (say, at energies above 2 BeV). The difference

O (w) - O,(w) is given primarily by the f isobar pole, so that

-(1-ap (0))

0_(w)- Tw;) ~@ (21)

The experimental results (cf. Fig.2) suggest (23) that ap(o) a 0.5.

Evidence on (0 _(w) - ¢g(w) ) from the Forward Dispersion Relations

Since the Regge Pole considerations are as yet not firmly
established, while taking their consequences as valuable indications,
we shall examine what information can be obtained about (&_(w)- & () )
from the forward dispersion relations, making as few assumptions as possible.

(34) (35)

Following Amati et al we write one of eqns(6) in the form

D tw 2f* - A%
+ ) ;’(:‘:*;:‘)DJ/’) +I(-‘--—)D(w,_)4 ! BRECN

= ’{'_77'“
w, “ (- {;ﬂ‘) “L‘-/“Z‘

- -]
L (w- Aw' o' O'MI / A ' (22)
el )P/ rptoc ) [t qui- gn)

wll 0,

A Y wew,

(34) D.Amati, M. Fiertz and V.Glaser, Phys.Rev.lctters, 4, 59 (1960)
(35) This is done in order to make use of Tauberian theorems for

Stielt jes integrals, We could equally well replace 7+( w’' ) by d:_(w‘ )
in the first integral and in the subsequent arguments.

It o, (W) approaches the limiting value &, as w oo in such
a way that Theorem C is applicablece) to the first integral on the right
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of (22), then this integral behaves like UL-Z a8 (W, —» 00
Therefore, using eqn(16)

/ ‘
" dw! o (w’) -o’+(w)
L q' w v,
B

2K, as w,-» o@

L (23)

(36) Change variables by x = w’'® , and get the case a=} of Theorem C,

Here the condition on 0;( @ ) is much more restrictive than eqn (10).

where K is a constant. By ‘a standard theorem(37) it follows from (23)
that L
dw' ' =
jq. (O (w') - g(w') ) =K (2L)
"

(37) G.h.Hardy and D.E.Littlewood, Proc.lond.Maths.Soc. 30. p.23 (1930)
(Theorem 5)

We must assume either that O (w) - O (w) = - K'/, , or that

(f+(w) - 0 (w)» =-K'Y/, , for all sufficiently large e . K' is

some positive constant.

The importance of this result is that the integral in (24)
must converge, and this provides some information about how fast A g(e)
X ACEE ¢, (w ) muet go to zero. For example, if 40 w)
decreases monotomically, then g¢f(w/) must go to zero faster 5 than

( ln, y )-1. Unfortunately the above derivation is open to some

A
(38) If (24) is true, then fwi?.‘...'.Ag(w|)__> 0 as Ur-»00
q’ )

[ ]
Therefore 4 0 (w ). £hw >0 as & -» ©0.

criticism. In particular Theorem C is only applicable to the first
integral on the right of (22) if d+(w) approaches &, faster than
w "7 ( p>0). We now outline a method which avoids this difficulty.

Consider the first integral om the right of (22). We apply to
it the following useful theorem,
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Theorem D -
h(y =P j % £(x) dx
. X(x - y)

and suppose that
)
(1) f 2(x) dx exists,
1 X

(ii) f(x). #nx —p» O as x <»oo,
(iii) £ (x)] &€ M (where M is a constant)

then
y%/b@ —> 0 as y —=> 0O

(39) The proof is given in appendix A. Note that f{(x)can be
positive, negative or oscillatory.

Now put x = w,l y ¥y = U: and f(x) = o;(w') -O—+

in the first integral on the right of (22). The coaditions for Theorem
o0
D become O‘;(‘“') -0,
(1)

0 duw' exists,
w
n
(1) (g (w) -U+)fnw—> 0 as w-»ro,
(111) /@ (w )] < MW
(40)
Then oo
olw')
W P dew. vt —>0 as W, -» oo
L ' X 2 L
q “J 'll)L
"

In particular we note that the conditions (i) and (ii) are satisfied

if O;(U) -» 0, as fast as, or faster than (b w )-2. It follows

as before that the integral (24) exists and (provided O (w)=>g asw->%)
Qe have Pomeranchuk's Theorem (17). This proof of (17) avoids the

rather restrictive conditions (10).

(40) By explicit calculation or by Theorem C,
oo

P| de' O, 0
ﬁ’L [u——q'wwﬂo as luL—P
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We can do even better if we assume that (Or (&) - a:_)
decreases (or increases) steadily to zero. For exa.mplet‘”) with
f(x) = (lnx)-1, or f(x)= ( bata )" we still have yyzk(y)—>0 as y-»00,
and eqns (17) and (24) again follow. In all of this we have assumed that

(41) See appendix A for details.

the cross-sections 0"+(u)) have limiting values o’+ (which may be zero)

as W -»sg. Various pathological types of beshaviour of 0;(&1) as ty-=> 70
have been discussed in the literature. For example, if ~ ¥

O;(W ) O;+ o; sin( e« ) as W-»oo, where ¢, and ¢ are constants
(and (71 < O’)). then eqn (23) is not true, and the integral (24) need

not exist’.(l’2 )}':;

(42) S.Weinterg. Phys.Rev. 124. p.2049 (1961) has proved that the integral
(24) exists if D+(w Y e and o;(w) are bounded as (-» &0 , provided
that (& (W) - -o'+(¢u) ) does not change sign an infinite number of timee.
Our Theorem D catches many of the cases of oscillatory behaviour of

(O (w) - O;(W) ) which Weinberg's result misses.

The theorems we have just proved and quoted cover a wide
variety of physically reasonable behaviour of 0;((0). We shall in what
follows assume that Pomeranchuk's Theorem (17) is true, and that the
integral (24) exists.

(iv) The Sum Rule
Dividing eqns.(6) by ¢ and adding, we get for u} large,

Subszituting x=w?t, y= Wy we can apply Theorem D to the integral
on the rigbt under the conditions on o;(w) and 0 () Just discussed
in the previous section. Then the last term on the right tends to zero
as W; » o0, 80 we have

D (wy) + D_(w)
oy = = 0 as wy -» o0 (26)

/ 2 ’
w, (et )+ Diwy) > %h- &) *;"}'Pr “’-":'(o;w) sqmi) s 1
¢ m
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Therefore eqn (15) implies eqn(16) and vice verea.
Now if we divide either of eqns(6) by @), and let W, ~» 00

we get the sum rule(le)
gl - (27)
) i (B Do [ Wigu-qu)
an’ Lt

(43) M.L.Goldberger, H. Miyazawa and R.Oehme. Phys.Rev, 99.(1955) 986

The existence of this sum rule depends on (15) and (16) and
the convergence of the integral (24)., It gives a useful relation
between the coupling constant f2. the s~wave scattering lengtns 849 a3
and the total cross sections 01( W ). Unfortunat:ly the slow convergence
of the integral means that in practice this relation will not give
(44 o - o, 178, 85 = <O. 87
and the data on & (@) available in 1960, Spearman 5 czaxlcml,atn.on(“5 )
gives f2 = 0, 082-0 008, Later lnformation(us) on cnﬁa)). and in
particular the values of ( g (w) - O (w) ) above 27BeV, will reduce
( 7)0 003. The good agreement, within the
errors, of this value of f2 with the values o%tained by other methods inJ‘h

results of high precision. Using the values

the mean value of f2 by around

below provides reasonably strong experimental evidence in favour of the

sum rule,

(44) J. Hamilton and W.S.Woolcock, Phys.Rev. 118, 291 (1960)

(45) T.D.Spearman, Nuclear Physics, 16, 402 (1960)

(46) G.ven Dgrdel et al. Phys.Rev., Letters, 8, 172 (1962)

(47) J.Hamilton. Proc. International Conference on Very High Energy
Physics,(CZRN) (1961) p.151.

(v) An Unsubtracted Dispersion Relation
The analysis of f.1 anddf2(i) shows that, if it existed,

an unsubtracted disﬁgiion relation for (f; (@, ,0) - £f; (&, 0))
would have the form

(48) fL+ and fL- are the lab, forward scattering amplitudes for

x* + p and n~ + p respectively.
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a %
‘ft. (D—(“U - 1?4.(“{” =(+ i +L, pf ga’

=, iy D]
(28)

where C is an arbitrary additive constant (no other term of the additive
polynomial can appear). The existence of the integral (24) ensures that
the integral in (28) converges. We shall show that C = 0. For this

purpose we use(ag):

Theorem E

7 X
and suppose o
(1) [ —ig) dx exists,
1
(i1) £(x),4n x => 9 as x -»oe ,

(1i1) [£(x)| € M (a constant),

-

then g(y)=»0 as y —> o

(49) We are indebted to Professor E.C.Titchmarsh for supplying this

theorem.

2
Substituting x = W', y = wLa f(x) = F(w') - a;(au')

we see that under a wide variety of types of behaviour of ( O (w') -
o:(w') ) the integral in (28) vanishes as W = 00. Therefore by
(15) and (16) we must put C = O, and the unsubtracted dispersion relation
is established.
Substituting w; = ¥ in (%8) we now get the sum rule (27).
Thus (28) with (C=0) and (27) are con‘sﬁant with each other. Eqn.(18)

and similar relations are ~f value in various calculations given below.,

(vi) Sublractions for the A(+) and B(+) dispersion relations

The partial wave amplitudes £yt of eq.(1.28) obey the

inequality

It | € (29)

P-Y I
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where q is the c.m. momentum. With a finite range of interaction R,
we expect scattering quickly to become negligible as the angular momentum
A increases above the value L= R.q. Thus the forward c.m. amplitude

obeys L
20,001 € T (A + 1) /g of (30)
~ 10
Thus we expect [£(q,0)! /q and lfL(qL No)Y | /qL

to be bounded as q = ¢o
Finn(so) and Singh and Udgaonkar(" )
argument to obtain bounds for A( y,t), B(y ,t) as

have extended this

(£0) A.C.Finn. Phys.Rev. 119, 1786 (1960); (91 ) V. Singh & B.M,
Udgaonkar, Phys.Rev, 123, 1487 (1961)

From (1.26) we get

1 WM WM
A w5 g L
(31)
1 1 1
SR S UL T e

Using (1.30) to express £, and f, in partial wave amplitudes, and letting
q »00 (g is always the c.m. momentum) we find that for fixed t (t € 0)

1 ] 1
g AL ( f&#(q) - 34,000 (Pp,,(w) - By() )

A

=0 (32)
1 1] t
gy B8 @ S (@)E,0) =B 6))
Now lPi(u)/ ‘f‘“ﬁ’]) if-1€¢p g +1 ,
and th. .quality holds at u = = 1. Also
Bhaq(8) = BR() = (BanBy () + (1-8) By, (W) (33)

The summations in (32) are terminated at L = R,q, and using
(29) we get, for -1 & wg 1,

L
] 2 2, .,2 3.
o Al € SI @t~ g s

R°q°

Wi



Thus for fixed t € O
vy, & K as vy oo (34)

where K is a constant. Here we have used
Vxw x> 2q2/M as VY- oo (t fixed)

which follows from (1.4X1.5) and (1.19).
We find limits for |B (¥, t)| for fixed t€ O by using

(33). As y-» o@ , u-1 because (~-t) = 2q2(1-u). Also
-¢) , (-t) (-t) >
(1-p) B ,(w) = —2—3- 3 W& 5— L+ (R
q bq
Hence as V9 o0 the term (l-+1)liz(v-) predominates on the right
of (33), and by (32)
L
1 1 2 1 2 1
IByt) | € 2 .28 = L 12224
Bn 20 " q g, 202 2

Thus for fixed t € O
[B(y ,t){ £ K' as ¥ -» o0 (35)
where K!' is a constant,
Now we examine the consequence for the dispersion relations
(1.16) and (1.17). First consider A(+). If Im A("')( V,t)~ ¥  as vyo0,
the dispersion integral does not converge, and we require one subtraction
giving
oo
Rea' (v, 1)= ReA(+)()g,t)+%(y2- %Z)Pf YL YA CIR)) (36)
wels (Y’ oA (v roz)

where yo is a real constant. The dispersion integral now converges,
2

and the second term oa the right of (36) cannot increase as fast as ¥
when J -5 o0 « We examine whether an additive polynomial is required.
Because A(+)(y.t) is an even function of ¥ (by (1.13)), such a polymomial
would contain even powers of ¥ only. Since Re A(+)(V,t)/va-> O as

y-» 00 , the constant Re A("')(yo,t) on the right of (36) is the
only term required. We notice that the value of Re A +) ()/o,t)
must be known before we can make use of the A(+) dispersion relation.

The B(+) relation is satisfactory as it stands in (1,17)

Because B(+)(y +t) is bounded as ) —p oo , the last term on the right
of (1.17) converges; also by Theorem A of _6 2(ii) it cannot increase as



36.

fast as ¥ when M-p o0 . Any additive polynomial here has to be an
odd function of y , so even the lowest term ‘ﬁ,' cannot occur.
(vii) Subtractions for the A=) and g{-) (52)
Next consider the A('T
show that ,A(-)( v,t)| /y is bounded as y - 00 . Therefore one

dispersion relations

relation. Our considerations above

subtraction may be necessary in (1.16). This gives

(52) This was first discussed by A.C.Finn, loc.cit.

[ o]
(=), ¢
ImA* " (y, t)
% ReA(-)(V,t)= ‘3 ReA(_)(Voyt)*' %(yz‘ %E)P dy! ( 3 2)(’ s2 2)
o vV =¥ (¥ -
veFim ¥ (37)

where ¥ is the subtraction position and t is fixed. The integral in (37)
converges, and by Theorem A of @ 2(ii) the last term on the right of (37)
certainly cannot increase as fast as v2 when )y - 00 ., 8Since the additive
polynomial in (37) must be an even function of ¥ , only the constant term
can occur. This is in fact Re A{7)( Yt y

Having established the dispersion relation (37) we now examine
some of its consequences. By (3h4) A(-)(y,t)/y is bounded ag y > @© .
Suppose that Im A(-)(v,t)/y tends to a limit A(-)(t) as ¥-» oo , and suppose
further that, as y- w0, ImA(')(y,t)/y obeys a condition like eqn(10),
so that Theorem C of §2(ii) applies to the integral in (37).
substituting y = ¥ , x = ¥2, £(y) = In A0 (y1,8)/ 473 ve see that
the last term on the right ?f (37) behaves like (%) A(-)(t) Tn v '
as JV-» o3 . Since Re A ')( ¥, t)/y is bounded, this is impossiwle,
and we must have A(')(t) = O, Now, under the same conditions, the integral
fdlr' ImA(')(y',t)/ ',2 converges, and we can write down an unsubtracted

dispersion relation (cf (1.16))
o0

CYPW
1 Re. A(")(y,t) = ‘a(‘)(t)+ 2p av ImA (¥, t (38)
» n t y02_ ’2
we /UM

vhere al~) (t) is an arbitrary constant to be determined (we shall see
below in § 2(ix) that a{™)(¢) = 0)
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The difficulty about this argument is that although
ImA(-)(y',t)/v ' is bounded as Y»00 , it need not tend to a limit
(or if it does, it need not do so sufficiently quickly). We therefore
loek for alternative justification for the relation (38). This comes

(31 on charge exchange scattering,

either from Pomeranchuk's argument
or the Regge pole argument, both of which were discussed in fZ(iii) above.
Pomeranchuk's argument implies that | A(-)( v )l /1 A(+)( y,t)] and
| B(-)( vl / IB(*)(V ,t)| tend to zecro steadily as W, increases
beyond (W (which is a fow BeV), for emall t € O, The Regge pole

-(1-ap (£))

argument suggests that these ratios fall off like ¥ where
0 < ap (t) € 1, and for small t(t < 0), %, (t) is not much
different from 0.5. In either case we have reasonably strong support
for the convergence of the integral in (38). We therefore assume
that the unsubtracted rclation (38) is valid, and we shall use it below
for numerical calculations.

The situation for B(‘)(y , t) is much the same as the
A(_)( ¥ ,t) case. We infer by the same gencral arguments that
Im B(')(y +t) & Oas y-3 oo , and that we can use the unsubtracted

dispersion relation.

(-) (-) ¢; Yg > ” vimBl ) t)
ReB (y,t) = b (t) + 3 5 + ; P ay' y > 3 Y
M(VB-y ) Y-y (39)
B+

Here b(-)(t) is an arbitrary constant to be determined (we show in fZ(ix)
that b(')('c) = 0.)

It should be emphasized th-t in view of theimportance of
the dispersion relations (38) and (39) (and for other general reasons)
it would be valuable to check th: assumptions which we have made about the
rate of decrease of A(-)(y,t) and B(')(V,t) as y-»o00 , It is very
desirable to have an experimental investigation of the charge exchange
cross-section n° + p - n° + n over the diffraction peak region of angles
at energies up to 20 BeV.
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(viii) High Energy Behaviour of A (v,¢t) ang B (v, &)

In order to evaluate dispersion integrals for these functions

it is necessary to know more about high energy behaviour of ImA(+) and
Im B(+) than is given by the bounds in (34) and (35).

First, we see from (32) and (33) that for large ¥ and
fixed t(t ¢ 0), each term in the series for ImB(+)(H,t) is non-negative(S}).
We would therefore expect Im B(+)( ¥,t) to approach the bound (35), and we
would not expect Im B(+)( v,t) to fall to zero as Y-» 9 . The individual

(53) Thuis is because Im t‘;‘-_ﬂq))o

a—

terms in the series (32) for Im A

(+)( y

+t) can be positive or negative, and
we can make no simple statement about Im A(+)(y +t) except to note that it
can be strongly affected by any appreciable differcnce between the amplitudes
i:&; and the amplitudes i,“_ i.e.y ImA +)(y,t) will be strongly influenced by
any force of spin-orbital type.

Consider the no-flip amplitude f( @) (cf (1.28)) near the
forward direction. By (1.23)and (1.26), provided E >» (-t)/4M we have

M E.W
£, + Cos Of, = = { Ay ,t) + S5 B(v ,t)} (ko)

where E = \/q2 + Me, W=E+ ‘/q2 + pz y and q is the c.m. momentum.

The helicity reversal amplitude (cf eqn.(1.23a)) is given by

f1-fz=1%A(y,t)+E’£(1-%)B(u,t) (41)

For ¥ large we have E »q, W¥ 2q, y:raqa/M,
and %
1, M
2(6) = £, + Cos of, » (g {A(y ) + ¥ BV ,0)}
(42)
f1=f = 4 [ My, +uB (> )}

Now there appear to be two distinct types of high energy
behaviour according to whether Im A(+)( Y ,t) does or does not reach the
unitary limit given by (34)
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The Ambiguity in Im Al as_¥-» QO

Let In AV (y,t) ~Cy and In B (V,t) 3 €' as ¥ =00
where C and C' are constants, and ~t{3 0)is amall, Then the helicity
amplitudes MH(y,t) and M_+(V,t) given by (1.23a) have the asymptotic
behaviour

Ik, (y )v3c v cOPR® as ¥ 00
ITn #_(r,0) |~ € ¥ fsin 21 = & (hr® y * (43)
(by the optical theorem we require (C + C') > 0). On thc other hand if
m Ay ,t)=» 0 and Im B(*)(y,t) > C'as V- 80 , we nave O
Imu, (5 ) ~ SCB% L*

as y -» oo (4h)
Jmw_ v, 0 /1 0, 000

(54) The polarization of the recoil proton in the lab. system for high
energy small angle scattering is

p
(-y-ﬁ-a—) o Im fo(y,t). B(y,t)} / | A(»,t) +¥B(¥, t) 12 yhere ) is

the momentum of the recoiling proton. Because of eqns (48) below this

is expected to be undetectable even in the case Im A(+)( y,ua)~ C¥ o,

The behaviour given by eqn (44) is possible because there
could be cancellations between the various partial wave amplitwdes in
Im A(+) (»,t) (eqn.(32)). The Regge Pole method does not resolve this
ambiguity( 55) .
Lovelace assumes that Im A(+)( ¥,t) is dominant for large ), but it is

In his discussion(%) of high energy elastic scattering

(55) This method gives |A(+) (vyt) | ~ Va(t)' IB(+)( y ,t)l“‘}’(“w)-ﬂ
as yyuefor -t > O and small. Here a(0) = 1 and a'(t) is positive
and small., However cancellations in A(+)( ¥ ,t) are not excluded without
further assumptions, and A(+)( ¥,t) may not reach the unitary limit
given by a(0) = 1. In the notation of S.C.Frautschi, M.Gell-Mann and
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F.Zachariesen (Phys.Rev, 126, 2204 (1962)) A(*)(Jv, t) does not

reach the unitary limit if t’nf:lllzm (0) =61(ti)PNN (0), where

1}“;;&N(O) (i = 1,2) are the constants coupling the vacuum pole to
the n-N system, In this case the spin flip amplitude does not
reach the unitary limit.

(56) C.lovelace, Nuovo Cimento, 25, 730 (1962)

clear that his analysis of the experimental differential cross-sections
could b2 carried out equally well by assuming that Im B(+)(y, t) is dominant.
(3) in using the dispersion relations (1.17) and (36)
assumed that the high energy behaviour of A(+)( ¥,t) and B(+)(y,t) is

Woolcock

given by the partially opaque optical disc model., This model assumes
fa(o) = 0. (i.e., the spin flip amplitude g(®) is zero).
By (1.26) this gives

a0 - 2B @), BP0 = dere) )

where £(8) is the no-flip amplitude as calculated from the optical model,
This should give a reasonably good approximation for ImB(+)(v yt)

in the forward direction and very close to it, for ¥ in the range 2 BeV =~

20 BeV. This is because Im B(+)(y yt) is the sum of partial wave absorptive
parts, and the finer details, such as the differcnces between Im 2{* and
Im {c_ should not matter much provided (-t) is small. Also, the optical
model gives a reasonably good fit to the experimental data very close to
the forward direction. There are some corrections due to the narrowing
of the diffract%g;)peak with increasing)ﬂwhich is expected on the Regge

pole hypothesis In our account of the calculations, which is given

in §§ 4 and 5 below, these corrections arc included where it is necessary.

(57) This narrowing has been observed in NeN scattering in the region
2 BeV - 20 BeV - Sec the report of G.Cocconi in Proceedings of the
International Conference on High Enmergy Physics (CERN, 1962).
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They are not large (¢f § 4(v) for an account of how the effect of the
narrowing on the 5')—,0- A(')(y st) and J_b_{ B(')(V ,t) dispersion relations
is estimated).

Clearly eqn (45) may only give a rough estimate of Im A(+)(v,t)
even at 2 BeV. On the other hand the integral in the subtracted dispersion
relation (36) converges well at high energies and the effect of errors in
Im A(+)(.V ,t) at, and above, 2 BeV is much reduced., There are other
factors, such as the errors in the subtraction term (cf § 5(iii)(b)), and
the Legendre series convergence problem (cf §¢ 3(v), 5(iii), 5(iv))
which make the dispersion relations for AC*)(y ,t) and its derivati of
much less value than the dispersion relations for the other scattering
amplitudes. +

Lo+
(ix) Re A(")( y,t) and Re B(-)( ¥ ,t) at High Energies

If, for high energy forward scattering, we accept the optical

model in the form given by eqn (45) we get

1 ReA(+)(y ,0) ~ y-yzRe f(+)(q,0) 1 (46)
vy (+) _ (+) as y» %0
ReB ) (v ,0) ~ v FRe £ (q,00 )

where Ref(+)(q,0) is the real part of the (c.m. system) forward scattering
amplitude, From eqns(15) (16) and the relation ) -_:_anZ/M we get
1
y

Re A(+)(v,o) - 0 } as V- 00 (47)

Re B(*)(v,o) - 0
The same result is given by the Regge pole treatment in the
(58)

The same result should also be true
Wb,

asymptotic high energy region

when t is small, as the variation is going from A(+)(y,0)to A

(58) See the explicit forms for A(+) and B(+) given by S.C.Frautschi et al,
Phys.Rev. 126, 2204 (1962)

(t < 0), should be smooth, and we are moving further away from the
important strip of the double spectral region. Thus we have

1ze A(+)(y,t) - 0 } as ¥ oo  for small (48)

Re B(+)(y,t) -+ 0 negative ¢
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The arguments given in §2(vii) above show that as y - 00
the A(')( ¥,t) and B(')(y +t) amplitudes tend to zero faster than the
A(+)(y ,t) and B(+)(V ,t) amplitudes. T-is will also be true for the
real parts of these amplitudes. Thus (48) hold also for the (-)
amplitudes. If we accept the Regge pole arguments 1 ge A(-)(x o t)
and Re B(-)(y yt) are directly seen(sg) to obey (48{. It follows
that the additive constants "

ra'(‘)(t) and b(')(t) in the unsubtracted dispersion
relations (38) and (39) are to be equated to zero.,

(59) Use footnote (55) and replace a(t) by a5 (t) 22 ¥(for t small)
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'§3. Convergence_of Legendre Polynomial ansions

In this chapter we examineé the rate of convergence of the
partial wave expansions of n-N scattering amplitudes. This is done by
using either Lehmann's Theorems or the Mandelstam representation. These
give domains of convergence of the partial wave expansions, and enable us
to estimate the rate of convergence. The results are applied to assess
the errors in the practical evaluation of the absorptive parts of scattering
amplitudes, and to find the limitations of the CGIN method for predicting
partial wave amplitudes.

(1) Llehmann's Theorems

The basic theorems on the expansion of a scattering
amplitude in a Legendre series are due to Lehmann(so). He considers the
amplitude T(W, cos ©) for the scattering of pions on scalar nucleons. Here
W, q, are the total energy, pion romentum and scattering angle in the c.m.

system,

(60) H. Lehmann, Nuovo Cimento 10, 579 (1958)

The expansion can be written

T(W, cos ©) = -;- ¥ °I:‘(Zl +1)c5(w) P, (cos @) (1
T 9.0

where Ch‘(W) are complex functions of W. It is convenient to consider the
Legendre expansions for Re T(W, cos®) and ImT(W,cos ©) which are obtained
from (1) on replacing qz'(w) on the right-hand side by Re Cg (W) and

Im ql,(w) ré%pectively. Now we examine what happens to these Legendre
expansions for Re T(W, cos @) and Im T(W, cos ) when W is kept in the
physical range W3 (M + u), but cos © takes unphysical values such as

cos @ »1, or cos <~ 1, or becomes complex. From general field theoretic
considerations plus microcausality(61) Lehmann proves the following two
theorems:

(61) Microcausality is the assumption that boson (fermion) field
operators commute (anti-commute) for space-time points whose separation
is space-like.,
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Theorem 1 For physical values of W, Re T(W, cos 6) is an analytic function
of cos @, which is regular inside an ellipse in the complex cos ©-plane
centred on the origin with semi-axes along the real and imaginary axes

having lengths x_ and (xi - ‘1)}/2 respectively, Here

“ [ 8u(y + 2M) v "
X = |1+
° - M - 202 |

The Legendre expansion of Re T(W,cos 6) converges uniformly inside this
ellipse, and
- Y 2 _ k7
An, 'ReC(W)IIf([x +(x-1)] (3
4_, o0 £ ~ [+] Q
(In Appendix B we give an analysis of the convergence of Legendre series

which shows how relations of these forms can arise).

Theorem 2 For physical values of W, Im T(W, cos @) is an analytic
function of cos © which is regular inside a larger ellipse centred at

the origin with semi-axes along the real and imaginary axes having lengths
(2 xo‘2 ~ 1) and 2 xo(xo2 -1 )y2 respectively, The Legendre expansion

of Im T(W, cos ©) converges uniformly inside this ellipse, and

— 1
/ -
/&.Wa ’Im C (W) ,‘e é [xo + (xoa- 1)%] 2 (4)
L oc0
An indication of the meaning of (3) and (4) can be seen as follows.

Suppose that as £200 (for fixed W) Im C (W) ~ K/.-}l where K and £
depend only on W. By (&) (62)/3 S[xo + (xoz- 1)}&_7-2. and since x> 1

we must have B< 1., Putting ﬁ = 1 - n where p > 0, it is easy to see
that ﬁ‘e tends to zero faster than exp( -£7) as £-»00,

Comparison with & Simple Model

It is interesting to compare (3) and (4) with the results of
a simple model. Rezard the nucleon as in distribution of matter in the
form of a disc centred at the origin whose axis is along the pion beam.
Let the density of matter at distance r from the axis be p(r). The
scattering amplitude for a pion of momentum q can be written in the
form (ef. eqns. (1.,18) and (1.21))

M hog £
yam T = £(@) =2 (2£€+1) f‘(q) R (cos @)

£=0
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By the optical theorem

L un %
where % is the cross-section for the £ th partial wave. The impact
parameter is r = l /a, and the Qth partial component of the incident
wave sweeps through an amouant of matter approximately given by i
2nr A rf(r) where Ar = 1/q . For fixed q, large values of 4 give large

(62) Note that  fim ‘Kli
b co

"
-
.

values of r. It is reasonable to suppose that the outer part of the
nucleon consists of one kind of matter (namely the pion cloud). We assume
that the partial cross-section (y cannet be greater than a fixed multiple
of the amount of matter which the [th partial wave sweeps through.
Therefore o < K', 2nr. Ar . £ (r) where K' is a constant.
That is
o, € K an(‘éqZ) /0(‘/q)

It is reasonable to assume that the density of matter in the

outer parts of the nucleon is given by P(r) = /Ooexp(-r/R) where R is

of the order of the Yukawa wavelength and Iao is a constant. Thus

T

©%) Infy (@) € 5" exp( - £/a%)

where K'' is a constant. Now for large

(Im £, (q)}v“ < exp(-"/qR) (5)

Eqn. (5) is of the same general form as eqn.(4). Further
they have in common that the right-hand sides increase monotonically
towards unity as q increases. The actual dependence on q in the two cases
is different, as might be expected from the very approximate nature of the
model. From (5) we can also obtain a relation analogous to (3). By
unitarity

(Ref‘(q))a + (In £,(9) )2 < ':I In £, (a)
8o
[Re £, @) < g7 £, ()%,
and by (5) 1
% 2, @] 4 g exp(-"/2am) 6)
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The similarity to (3) is obvious. It should be noted that the right-
hand side of (6) is the square root of thc right-hand side of (5).
The same relation holds between (3) and (4),
(11) Applications of Lehmann's Theorems

Lehmann's method can be applied to the scattering of pions
by real (spin ¥%2) nucleons, and the rcal and imaginary parts of the
scattering amplitudes are again found to be regular inside the ellipsecs
of Theorems 1 and 2 respectively. Further, the partial wave amplitudes
{L , and ft_.which were introduced in eqn.(1.28) obey the inequalities
(3) and (4).

The first appllcation( ) of Theorem 2 is to the dispersion
relations (1.16) and (1.17) for A( )(y t) and B( )(y ,t). In these
relations the integration is over x from u + t/4M to o0 and the invariant
momentum transfer t = —2q2(1 - ¢cos @) is kept fixed. when t ¢ O the bottom
end of the range of integration lies outside the¢ physical region. This can
be seen as follows., For q2-¢ s C08 61 and we have forward scattering.
As q2 decreases from oo , cos © decreases, i.e., the scattering angle ©
increases. When q2 = ~t/4 we have cos @ = -1. Values of q2 in the range
0 £ q2 € -t/b correspond to - o0€cos @ € -1,and are therefore
outside the physical range. @2=+0 gives » = B + télm by (1.4)_7

Continuation of Im A' ’(»,t) and Im B' (v ,t) into the
unphysical region 0 < q2 £ ‘t/h can be carried out by means of the
Legendre expansion. For a typical amplitude we have, from (1)
¥ T (l+ 1 0 C, (W) Py ( cos @) 2

® q 20
Assuming that we know the phase shifts, the C (W) are determ1ned in the
range 0 & q £ - K Now substitute cos O 14 /2q in (7). Theorem

Im T(W, cos®) =

N

2 tells us that the series on the right of (7) converges provided
1+ %41 < 2x?®-1 (8

It also tells us that, subject to (8), eqn.(?7) gives the analytic
continuation of Im T(W, cos @) from the physical region (cos @/ 1 for
any fixed qa in the range O £ q‘2 £ -t /4 'l'hie continuation givea

the correct values of Im A( )( ¥ ,t) and Im B( )(y st) for 0 ¢ q € -/,
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From condition (8) it is easy to sece that this continuation is possible
for

(0 &) -t g 4 BB 24 157
M -3

We saw in f 1(v) that this is also the range of values of t for
which the validity of the dispersion relations (1,16) and (1.17) has been
demonstrated mathematically,

Thus Theorem 2 completes the justification for using the
dispersion relations (1,16) and (1.17) for small negative values of t.
Below we report results obtained by using these relations and their
derivatives with respect to t at t = 0.
(iii) Expansion of the Absorptive Parts of A(V,t),B(»,t) in Partial

Waves

In evaluating the dispersion relations (1.16), (1.17) for
Re A(¥ ,t=0), Re B( ¥,t=0) and the derivative relations for

9 9
Jt Re A (v,t) ' t=0' 3% Re B(y ,t) ‘t:o etc., it is necessary to have

good estimates of Im A(¥,0), Im B(y ,o0), ’% ImaA (y,t) ,,t '
=0

}% Im B(w,t) ' t=o to imsert in the dispersion integrals. Using eqns
(2.31) and (1.30), these imaginary parts are expressed as infinite series
of terms containing Im fl , Where f£+ £ = 0, 1, 2, +es ) are the partia:
wave n-N amplitudes. In general it is To be expected that the integrals
in these dispersion relations are dominated by one or several of the well
known n-N resonances, but we should examine the convergence of these
partial wave expansions for Im A(¥,0) etc. in order to estimate the
errors caused by ignoring partial waves with large 4 .

A rough measure of the rates of convergence is obtained as
follows, We assume that the partial wave expansions for Im A(» ,0) and
Imn B ( ¥,0) will have approximately the same rate of convergence as the

series E(ﬂ(w))‘e , and the partial wave expansions for b-!t' Im ACY,t) | £=0
and 5-31-; Im B (¥ ,t) ’ =0 will have approximately the same rate of

convergence as f(@& 1) ( ﬁ(W))“ where
-2
P o+ x2- %7 9)
These estimates are based on using (1.30), (2.31) and the experimental
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values of the small phase shifts at 310 MeV which are discussed in
§3(v) below (67). Using the remeinder of the series Ep‘e for £ > L,
the fractional error in Im A( y,0) and Im B ( ¥,0) due to ignoring
partial waves with£> L is P I+, Similarly using the series DL (£ +1)

the fractional error in Slt Im A( v,t)" o and 5% Im B(y ,t)] t =0
is estimated to be 0 /oL{1 + ¥L(1-p) (3- p) + }‘zLa(‘l-p)a}‘

2
(63) Errors in a-%z Im A(y,t) I teo €tc. can be estimated in the

same way.

In §3(iv) it will be seen that the values of PW) given by
Theorem 2 for Im A and Im B in the range 250 MeV - 1 BeV (Table I) are
almost the same as the values given by the Mandclstam representation
(Table 2). We shall therefore take over the arguments of this paragraph
without change to the case of the Mandelstam representation. These estimates
give the error in that part of Im A (¥ ,0) etc. which is not due to a
dominant resonant amplitude. For example at an energy for which the
(3/2, 3/2) amplitude makes a large contribution to Im A() ,o0) the actual
fractional crror due to ignoring f,t + for £ > L will be much less than
PL+1' This reduction in the error is casy to estimate in any particular
case.

These formulae can be used with the help of Table 1 where xo,,O(w)

and various related quantities are given. |
. - 2 -1 2 \B]-2
Lab Enecrgy [Pion(c.m.) =" x 2xPe1 | +(x5-1) +(x7-1)
(wL'“) ' omentum (o) (] Lo (o} J Po o J
ual
& 150 MeV [ eq. 4 60=65 1.'75/q 6.1h/q2 0.29 q 0,084 g2
150 Mev | Tob 2% |1.41 | 3.0 0. 41 0.17
300 MeV | 2.13 88 [1.19 1.83 0,54 0.29
500 MeV | 249 108 {1.07 | 1.30 0.69 0.47
2 Bev | =M 5.6M° [1.011 | 1.02 0.90 0.81
2 BeV | DM _oml _Lum?
» 2 Be » 642 1404/ 4| 108/ | 1-27 5 -4 2

Table 1, Values of xo(w) given by eqn (2) for various pion energies.
The last column gives F(H) (eqn.(9))
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In evaluating the dispersion integrals in (1.16) and (1.17)
and their derivative relations, partial waves with £ > 2 have been ignored,
except in the region of tke F 5 /2 resonance where amplitudes with£)» 3 have
been ignored. The errors in Im A(y ,0) and Im B(y ,0) estimated by the
above formula with L = 2 are 0.5% at 150 MeV, 3% at 300 MeV, 12% at 500 MeV.
Taking L = 3 at 900 MeV gives 25% error. Similar estimates for

d d .
3t ImA (y,t) ,t=0 and 3% Im B (x,t) ’t:O give relative errors of
14%, 30%, 60% and 75% at 150, 300, 500 and 900 MeV respectively.

3t ImA (v,t)‘t
9

and bt Im B(¥V t),t determined from the known phase shifts and
cross-sections. Clearly, below 1 BeV the predominant contributions
are due to the resonances at 180 MeV, 600 MeV and 900 MeV, The above

estimated errors being percentages of the non-resonant parts, or background

In Fig.8 below we show the values of

turn out to be unimportant except for energies above 1 BeV., For these
higher energies other methods are used to estimate Im A( ¥,0), Im B(¥ ,0)
ete, ( cf. fjg 4(1i) and L(v) below)
(iv) Application of the Mandelstam Representation
According to the Mandelstam representation the amplitude B(+)($,t)
is of the form

2
B(+)(S.t) = - Gg Mz + J f ' f’.,a(u ot)
sH v (u'-u) (t'-t)

(M+u)2
w
/ /ds Poz(tr s L g (du, Psq(8"1u") (10)
(t'-t)(s'-8) na J (8'~8)(u'-u)

bl (Mep)? Mep)2 (Map)®

where the variables s, t, u were introduced in eqns (1.4) - (1.6a).
Grr2 is the rationalized =n~N coupling constant and /012, ,023, /031 are

real weight (or spectral) functions. ( )(s,t) obeys an equation
similar to (10), while A(')(s,t) obey relations like (10) except that
the terms in ar? (the Born terms) are missing.
For fixed energy, s ( and qz) are fixed, and u and t are linear
in cos 9. Eqn (10) can be used to find the values of cos @ for which
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B(+)(s,t) becomes singular when cos © is extended beyond the physical
range - 1§ cos @ € 1. Suppose that for given & ( 3 (M+v.)2) the smallest
value of Jcos @) for which (10) become singular is yo(s). Then B(+zs t)
is a regular function of cos @ inside the circle Jcos @) =y, (8) in the
complex cos © - plane., Within this circle B(+)(s t) can be expanded in
a power series in cos ©. apd this scries can be re-arranged into a series
of Legendre polynomials ge (cos ©). We must find where the latter series
converges.
In appendix B it is shown that the legendre series for B(+zs,t)

converges within an ellipse in the complex cos @ - plane which has foci

at cos © = ¥ 1 and semi-axes of lengths yo(s)’ Zzyo(s))2-17h along the

real and imaginary axes respectively. The asymptotic behaviour of the
coefficients of the Legendrc series is obtained cn replacing eqn(9) hy W)=
B (,o )f] It will be scenthat there is one value of y (8) for

Re B (s t) and a larger valug of y (8) for Im B(*)(s t). The real parts

of all the amplitudes A( =) ( ) thc the same yo(-). and the imaginary
parts of all four amplitudes have the same (larger) value of yo(s). In
general the values of yb(s) exceed the corresponding quantities X

&xoa - 1 given by Theorems 1 and 2 respectively. This can be understood
since the validity of the representation (10) is a stronger assumption than
the concepts used in Lehmann's proof.

The fact that yo(s) is in general greater than x_ (or (2x2- 1)

is expected to improve the convergence oithe Legendre Series. The °
estimated errors in the non-resonant part of any amplitude due to ignoring
partial waves having{>L, are obtained by the method of the preceding section
if we use for ,o the value given by eqn(9) when X, is replaced by the
appropriate value of yo(s). We now determine the values of yo(s) for

the real and the imaginary parts of the amplitudes.

Values of y (g) for the Real Parts of the Amplitudes.

For physical n-N scattering the .irst three terms on the right
of (10) contribute only to Re B(+). The nearest siggularities of Re B(+)
come from the Born pole u = M” and the cut t3 bu", Thenearest
singularities of Im B(+) come from the cuts u 3 (M + u) and t 3 ku .

The Born pole gives a singularity at

2 2
cos 0 = 1 4+ =% é; =2 (1)

2q
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For q/u«l this gives cos @ & '(M/Zu) - (Mu/q2). As q2

increases, cos O increases, and cos @ < =1 as qa-)oo « Value of coes ©
for various energies are given iu column 4 of Table 2.

The singularities due to the cuts are not found quite so
easily. This is because the spectral functions fz. appearing in (10)
in general vanish over a region adjacent to the thresholds t!' 4» '
s' = (M +p)2. u' = (M + u)z. The region where ,012(u'.t ) is
non-zero is shown in Fig. 3. To obtain the region where /923(t'£') is
non-zero weusimply replace u' by s'., Fig 4 shows where f931(s' u') is
non zero.

Now consider the third term on the right of (10)., Both
terms in the denominator can give singularities. The term in the
denominator containing u can only give singularities for u 3 M+ u)z,
and these correspond to values of cos © more negative than those given by
eqn.(11), so they do not affect the value of yo(s). Using Fig.3 and
letting u —=»00 , we see that the term in t gives a singularity for

= hua. that is
cos @ = 1+ Zuz/qa (12)

Column 3 of Table 2 gives these values of eds @ for various energies.
Clearly cos 6 +1 as q2—> oo .
Values of yo(s) for the Imaginary Parts of the Amplitudes

From (10) we have for 8 3 (M+u)2

- ]
ImB(+)(5,t).—.% jdt. /022 du' /031(8'“')
Ly (t'-t) (Mw)a u'-u (13)

For given s the nearest singularity is found by using Figs. 3 and 4 to
determine the smallest values of t' and u' for which /Oé}(t',s') and

(64) The boundaries of these regions are given by W.R.Frazer and
J.R.Fulco. Phys.Rev., 117, 1063 (1960) eqns (4.10a), (4.10b) and
(ko11),

/?31(3 '), respectively, are non-zero. Since these values of t' and
u' are greater than hu and (M + u) respectively, the singularities in
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the imaginary parts are further away from the physical region
-1 € cos @ € 1 than zre the singularities in the real parts.

The data in columns 5 and 6 of Table 2 give the values of
yo(s) for various energies. For q/ éklthe first term on the right of (13)
gives a singularity at cos O 8u /q , an. the second term gives a
singularity at cos 6 -8u° i /(q x (1 + ZM/F)) For q2 very large the
first term gives cos 6= + 1 + 2 / 2, and the second gives cos 6 = -1
-(M+u)2/2q for the nearest 51ngular1t1es.

(1) (2) (3) (4) (5) (6)
Lab energy |Pion (c.m.)| Nearest Singularities Nearest Singularities
((UL-}L) Momentum in cos@ for the Real in cos@ for the Imaginary
(u=1) Parts. Parts.
n-n term E Crossed n~-n term Crossed
(yo(s)7 term (yo(s)) term
B
Q150 MeV | &b e 2/ 2 -Ma/qa 8/ a (2Me1)
150 MeV 1.4 2.0 -6.25 7 -21.0
m Mev 2.13 1."*5 -B.L’ 1'9 -806
500 M.v 209 1.2’* "300 1.31 -403
2 BeV > M 100“"’ -1.43 1-048 -106"*
! 1 2 1e 2
> 2 BeV | >N ,‘1 +2/2 1 M2/2q2 14 > 1-(4e1)% 2
|

Table 2. Columns (3) - (6) give the values of cos © for which the real
and the imaginary parts of the scattering amplitudes meet their first
singularities in the cos 6 -plane, In each case the n-n term (i.e., the

term in t) gives the nearest singularity and determines yo(s).

Comparing column 3 of Table 2 with the values of X, in Table 1, we
see that the convergence of the series for the real parts of the amplitudes
is appreciably better than wouod be inferred from Lehmann's Theorem, The
same is true for the imaginary parts of the amplitudes except for the range
of energies 250 MeV to 1 BeV. Comparing column 5 of Table 2 and Table 1
it is seen that yo(s) is very little greater than(2 xoa - 1) at these



53.

energies, Thus the Mandelstam representation does not appreciagly
improx; the convergence of the partial wave expansions for Im A(' and
Im B~/ in this energy range.

Assuming that the ellipse of convergence of the Legendre
series is given by the Mandelstam representation we can go somewhat
further. Since the n-x term (i.e. the term in t) gives a singularity
much closer to the physical region than the crossed term (i.e. the term
in u), the rate at which the phase shifts fall off with increasing angular
momentum is governed primarily by the =m-n interactions. Information about

(65)

these interactions is known directly from experiments y and it appears

(65) See, for example, A.R.Irwin et al., Proceedings of the Aix-en-
Provence International Conference on Elementary Particles 1961,
Vol. 1, p.249 (C.E.N, Saclay) for details of the experimental results.
Also the review by G. Puppi, Proceedings of the International Conference
on High Energy Physics, C.E.R.N. 1962.

(=) (-)

and B
y is only appreciable for t 2, 16v.2

that the T = 1 n-n interaction, which is related to the A
amplitudes (but not to A(+) and B(+)
(and possibly only for t R 25u2).
For example if we ignore the m-m effects in the T = 1 case for
t < 15u2, the value of y (s) for Im A(') and Im B(') is appreciably
increased in the energy region 250 MeV to 500 MeV. At 300 MeV and 500 MeV
we get yo(s) = 2,7 and 1.9 respectively, instead of the values 1.9 and
1.3 given in column 5 of Table 2. This reduces the parameter
p = Z;o + (yoz- 1)%17-1 to about 2/3 of the previous values over this
energy range, and appreciably improves the rate of convergence of
Im A(') and Im B'"’. No such improvement is possible in the case of Im A
and Im B(+).
It should be emphasized that we aim to use dispersion relations
like (1.16) and (1.17) in situations where the dispersion integrals are
predominantly due to the contributions to Im A( ¥,t) etc. from the known

(+)

n=N resonances, The analysis just given is merely a way of estimating
the errors due to neglecting higher partial waves: it does not include
errors in the resonant amplitudes themselves.
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(v) Deducing the Partial Waves; Validity of the CGLN Method.
Having evaluated the dispersion relations for Re A(y ,t)
Re B(y,t) etc., we will wish tc find the wn-N partial wave amplitudes.
This is done as follows(a). Writing lﬁzz YR qa( 1-cos ©)

eans (1,30} give

2
2A
£,= 1, + 38, ( 1-—;—.2—)-f2_+5 £, f15¢ 1-—4—)-3} +
2
2
fe = (f1 - f1+) + 3(1" —%_)( fa-- f2+) 4+ e (1")
\ 6 0., 24°

f1=--§—f1+ 22(1—-%)f2++...

q q q

f'--—-6— (f, -f_.) + =8 g
2 q2 2- 2+ tete 17 ;K- 2+ "t

"1"

where F and higher partial waves are ignored and denotes differentiation

with respect to 42 Solving (14) gives

;
for = 11000+ -_3__- £,00) - 33— £, (0 + 33 £,(0) + vun
£, =£,(0) - A=£(0) ' £,'(0) S £,(0) + ...
- 12 (15)
£,, = L £,0(0) = =3t "(0) + ...
6 12 X
- - L [ '
Le- o f (0) + —25— £,0) + ey £, = 25E,1(0) + s

Here (0) indicates evaluation in the forward direction, 412 = 0.

It is necessary to assess how well the series in (15) converge.
For this purpose consider a typical partial wave 8g (s). It is given by
an expression like

v{ +1
gz(s) = J_q & T(s,x) Py (%) (16)

where T(s,x) is some scattering amplitude (like A,B) and x = cos 9. Eqns

(15) are obtained essentially by substituting in,(16) the expansion

T(oyx) = Weyx=t) + (=D 32| 4 = (x-1)? ——-—3():2 | r e
(1?7)
2 2 9T 1, .22 9%
= s, 4220) + & _—/ﬁa,_,(A)..__..‘ ...
oAl A%=0 2! a(AZ)Z A2=O

This Maclaurin series must converge for the range of values of x used
in (16), i.e., it must converge for x - 1 = -2, Thus the circle of
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convergence around x = 1 must have a radius of at least 2. This requires
that the domain of regularity of T(s x) should extend to x - 1 = +2,
i.eey x =3 ( or yo(s) = 3).

We wish to use (16) for the real parts of the amplitudes, so
Re 54(5) and Re T(s,x) appear in (16). Eqn.(12) shows that by the
Mandelstam representation the radius of the circle of convergence of the
cosine series is Yo = 3 for q2 =1, i.e., at 80 MeV lab. energy.(lehmann's
results (Theorem 1) give X, = 3 at 30 MeV), Thus assuming the Mandelstam
representation, the method of extracting the partial wave amplitudes given
in eqn.(15) should be satisfacbory at least up to 80 MeV.

If the radius of convergence ,o'( p'=y, =1 or xo-'l) of
ReT(s,x) about the point x = 1 is at least 2, then the series for Re €£(S)
which is obtained by substituting (17) in (16) will converge. Similarly
the series in (15) will converge if the corresponding o' exceeds 2. It is
also necessary to estimate the rate of convergence of this series, and
for this purposc we again use (16) and (17). It is casy to show that if
A is small (and fixed) and n is large then

+1
(1= P, (x) dx = (1€ 2

7 52 (18)

(]
w
——

+1
Also by Cauchy's test applied to (17) we estimate (very roughly) that

1 47T
n! ax”

~ 1y—h
, X =1 (/o ) when n is large. The rate of

(absolute) convergence of the series obtained by substituting (17) in (16)
is therefore similar te that of the series § (24p')n. From this we

expect that the series in (15) will only converge well if P' is appreciably
greater than 2. This behaviour can also be seen in another way, At

low energies f¢ =ag+. q2 where agp+ are roughly constant
(£>1). Substituting in (14) and putting A™=0, it is obvious that the

(66)

convergence of the series improves rapidly as q2 decreases., The same

(66) Notice that by egn. (12) ( Z/P,) = 2/(y°-1') = q‘2

applies to the series (15).
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Examples of the Rate of Convergence of Eqns.(14) and (15)

In fact there is reason to believe that we have somewhat
over-stated the difficulty of using (15). We shall examine some numerical
values at 80 MeV (q2 = 1). We take an unfavourable case provided by a
set of experimental phase shifts which give comparatively large D- and
F-wave phase shifts at 310 MeV(67) (q2 = L.7). At this energy analysis
of experiments suggests that some D-wave phase shifts could be as large as

12° and some F-wave phase shifts could be 2°.

(67) J.H.Foote et al. Phys.Rev. 122, 959 (1961). We use here the

phase shift set SPDF - II. The other sets given euggest a more rapid
convergence of eqns (14) and (15). 1In jSH and 5 below, in the actual
calculations, the phase shift set SPDFI, which is considered more likely,

is used.

From this we estimate ]f,+ [ 0.006 and’fB:[:! 0.0002 at
80 MeV. For comparison we note that the smallest P-wave scattering length
is of the order of 0,03. Thus at 80 MeV, or even at 120 MeV (g° = 1.57),
the D-wave terms in the first three series in (14) are at the most no larger
than the small P-wave terms, Further, using (1.30) we can find the F-wave
contributions to (14). These extra terms are of order 0.002, 0.002, 0,02,
0.012, 0.10 in the eqns (14) for £0 55 £,7, 1, £," respectively. In
each case, except the equation for f1". these F-wave contributions are
small compared with the small p-wave or d-wave terms. In the casec of f1",
the F-wave term gives a 30% contribution. Also, the situation is not
appreciably worse at 100 MeV (q2 = 1.27) than at 80 MeV.

These numerical values suggest that the series(14) and (15)
are asymptotic approximations at energies somewhat above 80 MeV (say up to
120 MeV). This could be due to the fact that the series for T(s,x) in
(16) is only likely to be badly wrong for -1& x & 1= p'. Provided p' is
not muc?séiss than 2 this should not be particularly important for the

gmaller values of £ . On the other hand the numerical values indicate

(68) For moderate or large.d , g& (x) varies rapidly towards x = =1 and
the errors could be appreciable,
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that at 150 MeV (q2 = 2,0) the series (14) may not even give a useful
asymptotic approximation.
The (-2 Amplitudes
What has been said so far in this section applies to the A
and B(+) (-) and B(--)
T=1n+n~» N+ Nchannel., If, as we suggested in §3(iv) above,

(+)

amplitudes., The A amplitudes are related to the
the T = 1 n-n effects can be ignored for t £ 15 uz, instead of eqn.(12)

we have

oo <10 L3

This gives a larger radius of convergence, and larger Io'(,0'= yo-1) 50

' = 3,75 at 150 MeV and P' = 2 at 260 MeV. Thus we expect that in
the case of the (-) charge combination the partial waves ean Be deduced
accurately by the CGIN method up to 250 MeV, and tolerably accurately up
to around 300 MeV. In practice this can be tested by estimating the D-
(or F-) wave contributions to (14) and examining their relative importance.
It will be seen in §5(v) below that the calculations in the (-) case
tehave well up to 300 MeV. o

(vi) The Subtraction Term in the A Dispersion Relation
(%9)

It has been suggested that a difficulty arises in using

(69) A.C.Finn, Phys.Rev, 119, 1786(1960)
AT

the dispersion relation (2.36) for +)( y,Aa) (Aag - /4) in the
CGLN analysis. A more detailed examination shows that this is not so.

We wish to evaluate the suptraction term A(+)( MO,AZ) at
the threshold q2 = 0 (i.e., Y, = ¥= A /M), For fixed Aa > O the
physical region extends down to q2 =A2 (cf. § 3(ii)) and the segment
0¢ q2< AZ is unphysical, As was seen above, Lehmann's Theorem 2 shows

that, for fixed A2> 0, Im A(+)( Y, AZ) can be continued analytically

to the whole of the segment 0« q2< A 2 provided AZ < 3“2.

However Theorem 1 does not allow us to continue Re A(+)(y ,Aa) to the
whole of 0 & ° £4° for fixed A%> 0. on 0ga°< 4 ° we have
o

[

cos @ = 1 - —-45- , and eqn (12) shows that by the Mandelstam representation
1
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Re A(*)(v, AZ) can be continued for |cos ©|¢ 1 + 2u2/q2. Thus
the Mandelstam representation allows us to ubtain Re A(+)()I°, Aa) for
all a2 , such that IAZI P uz.

The situation is illustrated in Fig. 5 which shows the main
features in the real (4;2, q2) plans for q2 <4 ua. The Mandelstam
representation allows us to evaluate the subtraction term Re A(+)()g,¢32)
anywhere on the segment -/ < AZ\< | of the line qz = 0. The expansion
(17) can be made, and the radius of convergence f)' of the power series in
(1 - x) is infinite for q2 =0 (P' o Zv.a/qz).

However we do not need to use the Mandelstam representation
here. Theorem 1 allows us t¢ continue Re A(+) (r, Aa} up to
cos 6= 1.75(u/q) ( -f Table 1), so the boundary of the region of con-

tinuation is 822 % 0.87 qu . This is shown in Fig. 5. Thus by

Theorem 1, even for the backward direction, we can find Re A(+)(}6, a 2).
Further, the expansion (17) is quite satisfactory as q2-9 O, and the radius
of convergence ©' becomes infinite as qa—a 0 (/o' o 1.75}Vq). Thus
the series (14) and (15) comverge extremely well for q2 small, and for q2= 0
only the first term remains in each of the series (14). This gives the very
simple result that the appropriate scattering length gives the contribution
of the subtraction term to the various partial wave amplitudes.
(vii) Conclusions

For the (+) charge combination the egns (19, which are essential
in the CGLN method of deriving the small partial waves etc., are only
expected to give reliable results up to about 100 MeV., This statement is
based on the validity of the Mandelstam representation. lLehmann's method
gives around 30 MeV as the upper energy limit, Inserting numerical
(experimental) values of the higher angular momentum phase shifts in eqn(14)

confirms the deduction based on the Mandelstam representation.

For the (-) charge combination, if we assume in addition that
the T = 1 n-mn interaction is negligivle for t g; 15 ua, the CGLN method
should work well up to about 300 MeV. The actual results in j;E(v) below
do confirm this,
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Finally we comment on a method which has been used by
Hamilton et al(70) to deduce the low cnergy behaviour of the T = O and
T = 1 n-x interactions from low energy n-N scattering. This method

(70) J.Hamilton, T.D.Spearman akd W.S.Woolcock, Annals of Phys.
a7, 1(1962), J. Hamilton, P. Mcnotti, G.C.Oades and L.L.J.Vick,

Phys Rev. (in the press)

primarily depends on an accurate knowledge of the S-wave n-N phase shifte

a, and a3 up to about 120 MeV, The values of o, and a, wnich are used

1 1 3
come partly from accurate ecxperimental data, and partly from a semi-
phenomenological parametcrization of this data(71). This parametrigation

which is discussed in ‘§h(ii), bclow can be justified by using certain

forward dispersion rclations, and it does not depend on the CGIN method.

(71) J. Hamilton and W.S.Woolcock, Phys.Rev. 118, 291 (1960)

(70)

Further, it has been shown that P-wave n-N scattering
in the region O - 100 MeV is reasonably consistent with the information
on n-n interactions which is given by the S-wave n-N data. This P-wave
data is partly bascd on the few accurate experimental results in this
energy range and partly on the CGLN analysis as applied below. It has
been shown above that the CGLN method should give accurate small P-wave
n-N phase shifts up to about 100-120 MeV irprespective of any assumptions
concerning the m-n interactions. The work on the =n-=m interactions(?z)
is therefore in no danger of being influenced by errors which are themselves

caused by the n-n interactions.

(72)  In the second paper in ruf. (70) n-N data up to 200 MeV was
used. However the deductioms about the m-n interactions were almost
entirely dependent cn the data for O - 100 MeV.
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k. The Parameters of Pion-Nucleon Physics

In this section it is shown that =n-N dispersion relations for
fixed momentum transfer can be used to give accurate information about
the n-N coupling constant fa, the s- and p-wave n-N scattering lengths
and other parameters of low energy pion physics. We also discuss the
parametrization of the low energy s-wave scattering. The general idea
is to use dispersion relations in which the predominant contribution to
the dispersion integrals comes from accurately known features of n-N
scattering, such as the low or moderate energy resonances. Using the
experimental data for these large contributions we can get accurate values
of the parameters. The errors in the values of the parameters found in
this way depend partly on the experinental errors in the resonance
data etc., and partly on the size of the small non-resonant terms which
are either roughly estimated or ignored. We have to assess both of these
errors.

It was first pointed out by w°olcock(73) (i) that the B+ relation
( § 4(i) below) gives a very good method of determining the coupling constant
fz, (ii) that the C(-) relations ( ¢ 4(iii) below) can yield accurate
31) and (2a13 +
351,27 and (iii) that the B(u,0) relations
( § 4(iv) below) can give accurate information about the combinations
(a33 - a31) and (a13 - 511). Woolcock(73) also used the f1(-)'(u,o)
relation ( § 4(v) below) to give information about (a33- a13). In the

information about the combinations (2a3} + a a11) of the

p~wave n-N scattering lengths

present article we shall allow for a larger error in the latter relation
than that in Woolcock's original work., In this relation one term involves
derivatives with respect to the momentum transfer and errors due to the
non-resonant terms and other features will be larger here than in the
other relations we have mentioned. It is important not to underestimate
the size of these errors.

The numerical calculations reported here are mostly due to

(73)

Woolcock . Some improvements have been made, and we have taken account

(73) W.S.Woolcock, Ph.D. Th.sis, University of Cambridge (1961)

of more recent experimental data. Also we have used the Regge pole method
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to give better estimates of the contributions to the dispersion integrals
from very high energies. For reasons of space we shall not give the

full details, concentrating rather on the salient points. The calculation
of fa and the study of the parameterization of the s-wave phase shifts

are given in more detail than the remainder, because of the considerable
importance of these results for numerous applications. Also, the Regge
pole estimates are given in some detail.

(i) Determination of 52

We define the equivalent pseudo-vector coupling conetant by
2 2 a?°

= (37)° R (1
n

where GR is the rationalized pseudo-scalar coupling constant used in

(74 for determining f2 is to

§ §1,2.3 above. The most promising method
use the dispersion relations (1.17) for the B amplitudes in the forward

direction (t = 0). It is convenient to use the amplitudes B+ for the elastic

(74) W.S.Woolcock, Proceedings Tenth International Conference on High
Energy Physics, Rochester, 1960, p.302.

scattering ni +p = ni + p. By (1.9) B, B(+)-B(-). B = B(+)+ B(’:
In the forward direction V =tuL where (JL is the (total) lab. pion energy
(eqn.(1.4)), and using eqn (1), the relations (1.17) give the equations
-ufa/ua o
KJJR°B+(“’L,°)=‘U 5 + 2 aw ImB+(t.)',O) ) ImB_(w',0) (2a
L-u/ZM w | B w'—ut w'+h.IL
4%/ 2 <
ﬂ%ﬁ ReB_(W ,0)= 5 ., B ( dw' |ImB _(w',0) _ImB,(w',0) (2b)
wﬂqiém ) LinM W' -y w' +wyp

In the integrands «/ is the (totgl) lab, pion energy.

Eqns(2) are used by iuserting known phase shifts on the left-hand
side at low energies (up to 200 MeV)., The integrals on the right are given
by the absorptive parts of the partial waves, and the best accuracy is
obtained by using the B relation eqn(2a) so that the major contribution
to the term containing ('d' “i) =1 comes from the ( /é. /2) resonance which
is particularly well known. We find the difference between ReB +“"L'°)/4+ﬁ4
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and the integral for values oftuL between 15 MeV and 185 MeV. This set
of differences is fitted by the function (corst)/( w - 2/2M) and the
best value of the constant yields the coupling constant fz. Now we
examine the evaluation of the various terms in (2a).

The basic formula, obtained from eqns (2.31) and (1.30) is

£ £
Blw o)/ —=—  —F8 2 0By ¢ L2 0B,
’ M(E+M) M(E-M) @ M Py @2 M D
-2 3By v 2 (e Dy -t u-Byr v (3)
2 oH D5,l+q23+M Py 2 W Fy

where E = (M2 + qa)%. The subscript notation for the partial wave
amplitudes fs, fP%’ fPaa’ c eeeee }s obvious. The convergence of
the series has been discussed in 9 3(//7 )and (v)

(a) Evaluation of Re B+(QJL,O)/AnM

The dominant contriwution to Re B+(&JL,O) over the range 15 MeV
to 185 MeV is the P 3, term which is given by the a33 phase shift. This
contribution varies from about -0.48 at 15 MeV to below =-0.1 at 185 MeV,
The remaining terms are small and we consider them first,

The s-wave term is very small, due to the large denominator
ZE(E + Ml7 °1. It is of order -0.001 at the lower energies, and is somewhat
bigger near 185 MeV. It is quite suffic%;g; to use the semi-phenomenological

fit for a3 given by Hamilton and Woolcock . The Py2 term can be evaluated

by using (and interpolating) the accurate results for O at 24.8, 31.5 and

(75) J.Hamilton & W.S.Woolcock, Phys.Rev., 118(1960)291. The solid curve
for a, in Fig. 2 of that paper is used. This curve costinues well to

3
the 310 MeV value of o given by J.H.Foote et al. Phys.Rev. 112, 959 (1960)

41,5 MeV (Rochester)(76), 97 MeV (Liverpool(77) and 310 MeV (Berkeley)(ag)

(76) S.w.Barnes et al. Phys.Rev. 117,226 and 238(1960)

(77) D.N, Edwards and T. Massam (Private Communication). We are indebted
to Drs. Edwarde and Massam for communicating their results,

(78) J.H.Foote et al., Phys.Rev, 122,959 (1961)
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Several other (less accurate) values of Gz are used. The error in the P%
contribution to eqn(3) is 0,008 at 40 MeV and 0,004 at 200 MeV.
The contribution of the d-wave phase shifts to ReB is not

negligible. At 310 MeV Foote et a1{” founa b5 = 3.1°% 2.6,
855 = =4,9° ¥ 2,20 (the SPDFI fit) It is reasonable to assume that these
phase shifts vary with energy as q , (this cannot introduce important errors).
Errors or ambiguities in the d-wave phases do not cause as large errors in
Re B+{4nM below 200 MeV as might be expected. This is because changes in
833 and 835 ?;gg alter the experimental values of Gy and a33 which we

, and the two effects act in opposite directions. The
errors given for Re B+/an in Table§ below include the effect of uncertainties
in the d-wave analysis at 310 MeV, and they allow for the SPD or the SPDF-I
(78) being possible.

As to f-waves, even if the phase shifts are of order 0.5° at
310 MeV (the SPDF-I fit(78)) this only gives a contribution of around
0.008 to Re B+/hnM at 185 MeV, and much less at lower energies. Higher
partial waves can certainly be ignored. In the notation of § 3( /v ) the
radius of convergence of the series (3) for Re B /#nM is Y= > 2 at 180 MeV,

have used

sets

(?79) We are indebted to Dr. T. Massam for information on this point.

and (3) should still converge well at 180 MeV.

Finally we examine the Pi& term, There is much experimental
data on Oy in the range 15 - 185 MeV. At the(;;yer end of the energy
range these values are used directly. Woolcock found that for other
energies the most accurate values could often he found by using the formula

for the total cross section(ao).

o, “'Zt {sin 2a3 + sin2a31 + 2 sin2a33 + Zainzs 334- 3 es:l.n2 5'35 + e }
4 (&)

The phase shifts gy Ozqs 533, 535 are not large. Even if some of them

are not known very accurately, eqn(k) will give accurate values for Oys

whenever Cﬁhis known accurately. The values of a33 which were used are

(80) Inelastic processes are negligible at 185 MeV,
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given in Table 3. The values of Re B+(LUL,O)/hnH are given in TableS .

L?b.Energy a33 Lab Energy a33
MeV) (Derrees) (MeV) (Degprees
Degrees grees)
15 0.8% 0.2 113 27.5% 1.0*
25 1.9% 0.4 120 ( 31.4% 2,0
( 31.8% 1.6
35 2.8% 0.7 135 40.8 0.8+
37 3,12 0.8 143 45,7 21,1+
40 4.5 1.0 ' Al 48.2 ¥0.9*
1.5 4,3% 0,2 " 150 55.1 2,0
45 b4t 1,9 170 69.5 ¥2,4+
58 7.5% 0.5¢ 173.5 70.8 1.5+
78 13.0% 2.0 176 75.2 13,10
80 2,4% 2.1 177 75.1 3.1+
97.1 20.9% 0.3 183.5 76,1 L2.5¢
100 21.7% 1.2

Table 3, The values of Uz used in computing Re B+(&0L,O)/4nM. The
asterisks denote those values obtained by using eqn (4). The remainder are
from phase shift analyses of differential cross-sectionms.

‘b) Evaluation of Im B, (UL,O)/‘mM for 0 - 350 MeV

In this energy range the dominant contribution to Im B+/4nM

is given by a The other phase shifts give much smaller contributions,

33°
and the information on these phase shifts which was discussed in the
preceding paragraphs is quite sufficient and gives adequmte accuracy for

Im B+. The a33 data in Table 3 is smoothed in order to evaluate the

integral in (2a). Following Noyes and Edwards(81). WOolcock(73) uses
3
q7cot a
——"T,—zz- = mw" +¢ (5)

where W'+ M = W is the total energy in the c.,m, system and m and ¢ are
constants. These have the values m = =3,81 : 0.071, ¢ = 8,349 t 0.125

(81) H.P.Noyes and D.N.Edwards, Phys.Rev. 118, 1409 (1960)

(units A =c =4 = 1 as usual), The errors in m and ¢ have a strong
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negative correlation, and the actual errors in cot a33 are very small,
With these values eqn(5) is a very good fit to all the a33 data up to
190 MeV,

Above 190 MeV there is a one-sided deviation of cot a33 from the
Noyes-tidwards curve (5), All the experimental data on Oyz (from phase
shift analysis and from cr+) in the range 190 - 350 MeV was collected,
and it turned out that a smooth curve could be drawn through the standard

error limits on nearly all the data. The 310 MeV value(78)a33 = 134,8°

20.6° has a very small error and this helps counsiderably to pin down the
curve at the high energy end. Essentially in this energy range Im B+ is
known about as accurately as o,-

For Im B_ we use the formula

1n 5 (9,0 = % 105w ,0) + $1n 5P (w 0) 6)

Up to 250 MeV reasonably accurate values of the T = )% phase shifts are known
and it is clear that the T = 3/, term in (6) is predominant. For 250-350 MeV
the phase shift aset aspp of Zinov et al(sz)was used. In fact, using the
bSPD set causes little change as the main contribution is from «

is about the same in both sets. Near 350 MeV, Im B(”)

19 nd lag, |

begins to increase

(82) V.G.Zinov et al Soviet Physics, J.E.T.P. 11, 1016 (1960)

rapidly because the 5}5 d-wave phase shift starts to rise towards the
600 MeV resonance. This will be discussed below.
(c) Charge Independenge

In writing (6) we assume charge independence, and it is relavant
to consider the possible effect of small violations of charge independence
in a calculation which aims to find the value of f2 accurate to a few
percent. A good test of charge independence in the elastic region is
given by the relation begween charfe exchange scattering(g;;p - n° +n
and elastic scattering ® + pep ® + p. At threshold and at low
energies (up to 225 Mev(Bk)) the relation appears to be well satisfied., At

(83) See J. Hemilton and W.S.Woolcock Phys.Rev. 118, 291 (1960) for the
situation at threshold.
(84) J.Deahl et al. Phys. Rev. 124, 1987 (1961)
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higher energies accugate charge exchange data is not available, but up to
around 350 MeV the m~ -p scattering data has been analysed with considerable
accuracy using charge independence (the point here is that the T = %2 phase
shifts can be assigned real values).

Above 350 MeV the higher resonances (600 MeV, 900 MeV, 1.35 BeV)
appear either in the T = % or T = 3/; states., Also the analyses(as)
of charge exchange data( ® + p -» ®° + n) near 600 MaV and 900 MeV
are consistent with charge independence. Nevertheless for all we know

there may be some departure from charge independence at cnergies above

(85) J.C.Brisson et al. Nuovo Cimento 19, 210 (1961)
R. Omnes and G. Valladas, Proceedings Aix-en-Provence International
Conference on Blementary Particles (1961) Vol.I, p.467.

250 MeV, It can be seen that even if this is so it should have very little

effect on our results.,

The dispersion relations (2) relate to clastic n: - p scattering,
and their derivation does not require charge independence 86). The
experimental date which is inserted in (2) comes from the differential cross-
sections for elastic m « p scattering and thc total cross-sections
(which are related to elastic scattering through the optical theorem) .~

In analysing the m~ - p scattering data the relation
2
25 ol +%T(2 )

is used for the m + p elastic scattering amplitude T, and the same
combination of isospin amplitudes is again used to give the values of B_
which are inserted in (2). Thus if charge independence is not exactly valid
above 250 MeV, no error is produced in our calculation (the phase shifts

for the T2 (87)
the amplitude T(%) is then no longer an isospin amplitude, Finally

amplitude need not be real at these energies). Of course

(87) 1If the charge exchange (n~ + p — 7° + n) rate were much smaller

than that given by charg? indepeudence, the real parts of the ¥ k)phase
tihe am possi(vle ( 5)
shifts might have tc% . However references show that the

charge exchange rate is about what we would expect by charge independence.
(86) Sec for cxemple, THamiltaw, Phys. Rev. 110, 34 11555)
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we note that at very high energies (CUL;B 2BeV) we find Im B_ directly
from the total cross section ¢ (see below).
(d) Evaluation of Im B,(w;,0)/4mM for 350 MeV - 2 BeV

There is an accurate phase shift analysis of nt - p scattering

(88) (89)

at 500 MeV » apd other analyses at relevant energies, so there is no

(88) W.J.Willis, Phys.Rev. 116, 753 (1959)
(89) M.E.Blevins et al, Phys.Rev. 112, 1287(1958), W.D.Walker et al
Phys.Rev. 118, 1612 (1960)

difficulty in obtaining Im B+ sufficiently accurately up to 500 MeV. From
§ 3 Table 1 or 2, we see that the radius of convergence of the Legendre

expansion of Im B is 1.3, s0 we expect the series in eqn(3) to converge

slowly at 500 MeV and higher energies. Therefore other methods must

be used to find Im B+ at such energies. The method used is to estimate

Im B+(LUL,O) at 2 BeV from an optical model. Between 350 MeV and 2 BeV

+
there are resonances in both the n - p and n =~ p cases, and the

coatributions to Im B+ from the resonant partial wave amplitudes are

determined by a method given below. The r>maining (non-resonant) parts
of Im B+ are obtained by drawing smooth curves to join the calculated values
of Im B: at 350 or 500 MeV on to the 2 BeV values (making any possible use

of any phase shift analyses which are availahle between these energies).
This procedure for getting the non-resonant parts of Im B+ in this energy
range is not particularly accurate, but it is seen from Table 4 below that
their total contribution to the integral in (2a) is very small, so even
large percentage errors are unimportant.

(73)

Woolcock estimates the value of Im B+ around 2 BeV by using

a partially opaque disc optical model(go). The spin flip amplitude g( € )
(eqn.(1.28)) is assumed to be unimportant(91) and the no-flip amplitude
£(8) (eqn. (1.28)) is given by R

£(e) = 4( 1-a) q fo Jo(q'o 8ine) f 9

(7)
= i(1-a)RJ1(qR sin @)/sino

where R is the "radius" of the nucleon and a the apacity parameter

(90) Inside the first diffraction zero an optical model can be consistent
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with the Regge pole results provided the parameters of the m<lel vary
slowly (logarithmically) with energy.

(91) As was seen in  § 2(viii) above it is by no means obvious that the
spin flip amplitude g (6) can be neglected. However any error here should
not change the estimates of Im B by more than a small factor.

From experiments in thc region of 2 BeV it is estimated that R = 1.0k x 10-130m
= 0,74 units and a is real witth ‘1 - ha = 0.43., Neglecting for the moment

dnd n.
any difference between the =« -p/amplitudes, for energies near 2 BeV this

gives, ueing eqn (2.45)

W+ M 1

1 -
TtTImA:(w"O)=q TN X 1.16 % 10

(8)
—PE-Im B(w;,0) =q ° E:M x 1.16 x 107

The rcal difficulty about Im B+ in the range 350 MeV - 2BeV is the
nature of the hump in the 01 cross-section at 1.35 BeV(Fig.6). If this is

due to one or several resonances, then one or several of the terms on the

right of (3) will be comparatively large. Several authors(gz)suggest

that there is a (T= g) P3 resonance at 1.35 BaV, Others(gz)suggest

that there is a d resoégnce at 1.2 BeV and a f resonance at 1.4 BeV,
5/, ”,

(92) N.P. Klepikov et al, Dubna Preprint (1960) ; W.N.Wong and M.Ross.
Phys.Rev. Letters 3, 398 (1959)

(93) R. Blanckenbeckler and M,L.Goldberg, Phys.Rev. 126, 766 (1962),
footnote 24; W.M,layson, CERN Preprint (1961)

The contributions to Im B from such resomances are found as
follows. Let C;t be the resonant part of the total cross-section
(it is found by estimating how much of the cross-section is merely back-
ground, bearing in mind the limits set by unitarity and the elasticity
parameter). The optical theorem gives

Gemint, =gk 0, (G=LIH (9)
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where 14_* is the resonant amplitude. From the estimated width and
height of the resonance we can now obtain the contribution to the integral
in (2&) .

As an example we shall give a rough estimate of the contribution
from the 1.35 BeV hump in a;. From Fig., 6 we cstimate that if this is a pJQ
resonance then the resonant part 0}+ is 15 mb, at the maximum, and the
width at half height is around 400 MeV. Using eqns(9) and (3) we find that
this resonance contributes ~1 x 107> to the integral in (2a). Alternatively,
if the hump consists of d%& and fZ@ resonances at 1.2 BeV and 1.4 BeV
respectively, each being 10 mb high and 250 MeV wide (at half height),
they will contribute -1.10"> and =1.7.10"° respectively to the integral in
(2a).

In the values given in Table 5 below,the hump was assumed to be
a pj/b resgnance. The estimates just given show ‘ at this will lead to a
value of f< which is (a) too small by 0.,0004 if there is no resonance,

(b) too large by 0.0006 if there are actually dg, and £, resonances.
These uncertainties are included in the final error quoted for fz(eqn.(15)).
(e) Evaluation of Im B_(uJL,O)/hnM from 350 MeV - 2 BeV

The procedure here is almost the same as in the case of Im B+.
The only difference is that the dJV; and fi& resonances at 600 MeV and 900
MeV have to be treated somewhat more carefully as they give larger
contributions than the n+-p resonances mentioned in the previous paragraph.

Using a Breit-~Wigner shape WOolcock(73)

estimated that the resonant part of
at 600 MeV was 27 mb, at maximum, and that at 900 MeV the corresponding
figure was 26 mb. Then using eqn (9) the contribution of the resonances to
the integral in (2a) was evaluated, The value used for the resonant part
of the cross-section at 600 MeV is perhaps a little too large. A recent
analysis(gu) suggests 23 mb, and this correction is included in the final
values for the integral given in Tables 4 and 5. (The correction is in fact

very small as can be seen from Table 4).

(94) R. Omnes and G. Valladas (reference (85)). These authors suggest that
there are also moderate amounts of amplitudes other than D 3y, ond F;/‘ at
600 MeV and 900 MeV respectively, These give corrections which can be
ignored here (cf }5 5(ii) for further discussion).
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(f) The Very High Energy Contribution

In the original calculation(’;})(?u) of the integral in (2a)

ImB+( w',0) and ImB_( @ *,0) were token equal above 2,5 BeV. Recent

(95)

experimental results and the Regge pole methods make it possible to

estiqate more accurately the contribution from above 2 BeV, By eq.(1.35)

(95) See Fig. 2 above’

£,(w ,0) = (A +wB) £10)

where fL(wL,O) is the forward scattecring amplitude in the lab.system,
In §2(viii) we gave reasons for believing that A( v,t) does not attain its

unitary limit as V<9 ©%, Thus for very high energies eqn(10) gives

) b ()
Im B "(w;,0) = oy Imf (¢y,0) (11)
x¥(o -0)
Also B(-) = Y(B_ - B+), and (11) can be used to find the high energy

contribution to (2a).
Using the Regge pole approximation and the high energy data

(Fig. 2) Udgaonkar(%) estivates that, for large w ,

~ (1 - a_(0)
o (@) - 0 (w) ~ £1 - 807 (12)

where a P (0) ® 0.5. It is clear from the data that ¢~ must equal

(96) B. Udgaonkar, Phys.Rev. Letters 8, 142(1962)

at some energy near 2 BeV (sece Figs. 2 and 6). Also 0O - o, = 2.5mb at
L BeV. To be consecrvative we shall assume -0, = 2.5 mb. over the

range 2 - 4t BeV. Above 4 BeV we use
v (1'“,0(0))

4 Be
O'_((UL) - 0;( wL) = (2.5 mb)( Ull,—-
This gives(97) 0 o(w') -0olw")
At = 3.2 107 (13)

>BeV w!

(97) The unit of area is 20 mb.
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on using P (0) = 0.5

Substituting (11) and (13) the integral in (2a) gives the
contribution ~1,2 'I()-3 from energics ' 2 BeV, From Table 4 it is
seen that this is not negligible. However this is an overestimate of the
(98) 15 4 w11 also
contribute to Im fL(LuL,O) (eqn.(10) at the lower end of the range

high energy contribution, From eqn (8) we see that

(98) to allow for the diffcrence between o_ and o, the numerical factors
in eqn.(8) have to be different by about 8% in the I cases.

2BeVg W, € 00 | To correct for this, we estimate(gg) that it is

L
necessary to multiply the above result by O.4, so that the contribution
to the integral in (2a) from w' $ 2 BeV is - 5.10_4. Ignoring this

term would change f2 by no more than 2.10-4.

(99) This is obtained by comparing the incorrect value Im B+ = O+
given by ignoring A+_ with the value predicted by eqn(8) near 2 BeV. This

correction is consistent with the value of Im A+ given in eqn.(8)

(g) Summary and Rcsult
In Table 4 we give the contributions to the integral

o0
1 b Im B (',0) Im B_(w',0)
Iz —— dw' u - (14)
LM
in

w' 'wL w' + wL

fortuL = 1.286(L0 MeV). This shows how the contribution to I from the

(34y ¥ ) resonance dominztes, Even the next largest contributions, which

come from the ds‘z and fsﬁ. n~ - p resonances, are very much smaller,

Energy Region Integral over Integral over
(MeV) Im B+ Im B_
0 - 300 -203.8 +14,2
300 - 500 -10.9 =2.1
500 =1200 -2.8 §(1°°) -14,8
1200 -2000 -001 "'0.‘*
2m - O -031

I
Table 4 Contributions to the integral (I/n) * 100 (eqn.{14)) from various
energy ranges for wy = 1.286 (40 MeV).

(700) The sum of these terms is to be replaced by approx. -1.9 if there is
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no resonance at 1,35 BeV, and by =-4.6 if there are d % and fZ'
2
resonances at 1.2 and 1.4 BeV.,

In Table 5 we give the values and errors of Re B+(uuL,O)/hnM
and the integral I/n for the 24 values of twy for wvhich we have
determinations of a33(Tab1e 3). The last column gives the value of f2
deduced from eqn.(2a). Theerrors qu-ted for I are standard errors dewived
from the errors in the experimental data and various uncertainties which
were discussed above. (The possible systematic error mentioned in footnote
(100) is not included in Table 5 but is included in the final value of f2
in eqn (15)).
The values of f2 in the last column of Table 5 are remarkably

consistent. Incidentally they provide a good proof of the validity of
the B, dispersion relation (2a) up to 185 MeV. The errors in the values
of f2 cannot be treated as independent for various reasons. For example,
the 135, 143 and 144 MeV data are undoubtedly correlated. There are
various ways of getting uncorrelated values of f2. We could select the
value of f2 with the smallest error in each of the five sections of Table 5.
These relate to well separated energies and they will be un-correlated.
Their weighted average is f2 = 0,0825 b 0.003. More data can be used
by selecting the value of f2 with least error in each (non~overlapping)
20 MeV energy interval, Again, correlation of errors should be
unimportant. The weighted average is f2 = 0.081 I 0.002. Finally we have
to allow for the possible systematic error due to lack of knowledge about
the 1.35 BeV hump in nt -p scattering. We are certai. to include this
if we write(101)

£2. = 0.081 % 0,003 (15)

(101) The reascns for the differences from the value 2 = 0.080%0.002
given in reference (2) are (a) the present analysis is more careful about
possible correlation of errors in Tahle 5, (b) a larger error is allowed
for uncertainties about the 1.35 BeV hump.



e R T 2

15 0.482 £ 0,103 0.183 % 0,003 0.097 ¥ 0,026
25 0.491 ¥ 0,087 0.198 ¥ 0.003 0.081 ¥ 0.024
35 0.442 £ 0,100 0.213 ¥ 0.003 0.067 % 0.029
37 0.446 * 0.099 0.216 ¥ 0.003 0.068 ¥ 0,029
40 0.552 * 0.108 0.221 ¥ 0.003 0.100 £ 0,033
41,5 0.507 ¥ 0.014 0.224 % 0,003 0,086 £ 0,005
ks 0.458 % 0,098 0.230 ¥ 0.003 0.071 ¥+0,030
58 0.495 % 0,028 0.252 ¥ 0.003 0.081 £ 0,009
78 0.506 ¥ 0.067 0.289 % 0.004 0.081 ¥ 0.025
80 0.468 £ 0.068 0.293 £ 0.004 0.068 £ 0.025
97.1 0.522 ¥ 0.008 0.314 0,004 0.084 % 0.004
100 0.510 ¥ 0.022 0.314 % 0.004 0.080 ¥ 0,009
113 0.485 X 0.013 0.306 ¥ 0.003 0.078 ¥ 0.006
120 0.471 £ 0.018 0.293 £ 0.003 0,079 £ 0.008
120 0.474 £ 0.014 0.239 % 0.003 0.081 ¥ 0.006
135 0.420 ¥ 0.008 0.253 ¥ 0.004 0.079 ¥ 0,005
143 0.380 % 0.008 0.219 £ 0.004 0.078 ¥ 0.005
14l 0.374 £ 0,008 0.214 ¥ 0,004 0.079 ¥ 0.005
150 0.327 ¥ 0.013 0.179 % 0.004 0.074 ¥ 0.007
170 0.175 £ 0,019 0.040 ¥ 0.003 0.073 ¥ 0.010
173.5 0.158 I 0,012 0.011 % 0.003 0.080 ¥ 0,007
176 0.170 £ 0.024 -0.008 ¥ 0.003 0.070 ¥ 0.013
177 0.113 £ o0.024 -0.016 ¥ 0.003 0.071 ¥ 0.013
183.5 0.099 ¥ 0.018 -0.041 ¥ 0,003 0.080 £ 0.010
Table 5 Values of -ReB /4nM and the integral I /n (eqn (14)) for

24 values of @+ The last column gives 2 determined by eqn.(2a),
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In §¢(n‘i,below the result of another determination of f2

is given.
(ii) Parametrization of Low Energy s-wave Scatterin
. . . Z102§

It was pointed out by Cini et al that the expansion
= 5 5 =
a; = a,q + 8,97 +c.a” + .., (i = 1,3

is not a good way to fit the s-wave n-N phase shifts a, and a3 even for

energies up to 50 MeV. The convergence of the secrius is poor, and by

using it one can readily deduce incorrcct values of the scattering lengths a,
and a3 from low energy experimental results, Dispersion relations suggested
much better expansions which we applied to the low energy data in an earlier

paper and found consistent and accuratc values for a, and a

1 3

(102) M. Cini et al. Nuovo Cimento 10, 242 (1958)

The best form of these low energy expansions for the s-wave
phase shifts can be obtained from the forward scattering dispersion

relations (2.6). We write as usual D(+) =¥ (D+ +D_), D(-) = %(D_-D+)

where Di(“'L) are the+real partg of the forward scattering amplitude in
the lab, system for n + p -3 7m + p at (lab) energy wy. Then eans.
(2. 6) give

D {w ‘ "D (/LJ+f—_L

Wi M2 e A&
wn>!

7 (16)
P Yt | — e
un" W-w, Wty
D twy = w, 3 - ek /
#‘“E-ﬂﬁn"“ﬁ%Ml
9. /
+ 4-; ? dw 0_(..) ,) - oo j (1?7)

where U‘+)= %(0’;- 01) Here (T} are the total cross sections for
n + p scattering, and S q' are lab. momenta and ) w' are the
corresponding lab. energies.

We put w = 1 in all that follows. Using (1.33), (1.31) and
the partial wave expansion (1.28) the left-hand sides of (16) and (17)
can be written in terms of the phase shifts. Also by (1.37)
(1) = (14 B x Hays 20,0, D00 = (14 ) Bay - ap). Now
rearranging (16) and (17) we have
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San R0 4+ 2 $in 20(y W

= (Q,+2
29 My (e~ ab)
+,*[ e L (18
& #tt/"" %) | 20 “w o' ~L+ w#&)‘_ }
3
+ 3 M

o BT YRSl AR

+ (d-wave fcr.s) _—l
-t

Sth 2et, = Sin ¢, W
.?z M+

[~ ]
2f 3 Pfdw"" L
8 [ty o ol 5t

S e N | &(ﬁ,,-uﬁu—ﬁh—zﬁn)

1+ I/H)(" ’/a,,a)(ﬂ.:- '/yn‘) Wi )
+(¢"U€—V¢ t-l-ru-‘) ] ,

= tmag)a (19)

Here p = e%2r,2g )
aT,2J sin a2T,2J/q3 where aaT,ZJ are the p-wave

n-N phase shifts and q is the momentum in the c.m. system. The d-wave
terms in (18) and (19) are of the form: (d-wave scattering length) x q2, and
they are very small for energies below 100 MeV.

It is convenient to write (18) and (19) in the form

sin 2a, + 2 sin 2a W
1 2 = (a1 + 2a3) + C(+)qL2 (20)
2q M+1
sin 2a, - sin 2a W
1 2 = (a1-a3)wL + C(-)qL2 (21)
2q M+1
where C(+) and C(') are given by the terms inside the square brackets in

(18) and (19). Woolcock(73) roughly evaluated these expressions for C(+)

and C(') at low energies. The experimental values of a; and 033

(cf Table 3), and the value (15) for fz were used to give accurate values
of the integrals, the Re pH terms, and the Born terms, Estimates of the
remaining Re pa,r’ 27 at low energies were made on the basie of the
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available phase shift analyses. The results showed that these
expressions for ¢ ana ¢t
oEw, - b)) €45 Mev,

Next the eqns (20) and (21) were used to fit the experimental

of a, and oz up to 45 MeV, and it was found that, to within
(+)

varied only a little over the energy range

(103)

values
the experim»ntal errors C and C( -) were constant over this range

of energies.

(103) The available accurate data used were 13 values of sin 2a3, b values
of (2 sin 2a1 + sin 2a3) and on¢ value of (sin 2a1 - sin 2a3). For details
see reference (73). The gppropriate inner Coulomb correction (J.Hamilton
and W.S.Woolcock, Phys.Rev. 118, 291(1960) was uscd bearing in mind that

differcnt authors may use differ.nt values of the Coulomb cut off radius

(=)

and C are almost constant at low energies

(+) (=)

and C are constant at low energies may

The fact that C
appear somewhat surprising sincc¢ individuazl terms in the square brackets
on the right of (18) and (19)vary considerably with energy. We begin to
understand the reason for tris result if we use the rough approximation for

the p-wave amplitudes p2T 27 given by C.G.L.N. (2). These equations are

RC n) - ‘f?r / ’
Bt Jor T 7 P/, g I“"‘?a’“’x’[w" i ?’_ ]

Ek,/%(uﬂl

"

2
) j{;f. +§ / Ut r""b.s{"’u
U‘-&uf

22
Re by = Re byt = L Rufy i)~ 385, &

Here w'= W~M, whcre W is the total energy in the c.m. system, and K is
a cut-off whose value is around M.

According to egns(22) the chief variation in Rep33 at low
energies is due to the Born term hf /}to‘ and the principal value part of
the integral. The chief variation of the remaining Re pZT,ZJ at low

energies is due to their Born terms, Further, the mainlow energy
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contribution to the integrals within the brackets in (18) amnd (19) ie

due.to the principal valué integrals. We can approximate them as follows(w“)

’ o,
TP w'gra) 2
, ¥ wew, 7

~ 87T M & Ton by’
wP/dtu 23

W X

(104) The approximations used are only intended to give a good account

of the variation of the various terms with wy at low energies.

where we have used

qL/ (wz-M -1)

!
)
=Ix

M
™~ - -
and, 0'+(u ) X 8nq Im p33(w ) = 8nqL( w) Im p33(w )
Similarly
%
sP[ 4o a'rmpfec ~’I.‘.‘_";§_.
/ Z' w- Wy - wht
Now if we substitute the expression (22) for Re P33 in (18) and (19) we
find that the principal value integrals cancel each other, Further the Born
terms in (22) contribute -6£2 /w* and O to Re(p,l1+2p13 P3 2p35) and
w.
Re(p,m +2p1} + 2p31 + ‘+p33) respectively.  Using @ (awp ,ma)..n/wu.
it is seen that the first of these cancels the Born term in (19). The

Born term in (18) is less than 3f2/M+1 s0 it can be ignored here,
(We could go further and show that the terms in (22) which are of the form

K
dw' ImPy(w')
'S w 33
1 W+ W

cancel the remaining integrals in (18) and (19))

The reason for this cancellation is obvious. C.G.L.N.(Z) obtain
thg approximations $22) for the p-waves from the dispersion relations for
AP (vt)  ana B (»,t) (6qns(1.76) and.(1.17) by aesuming inter alia
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that p}:5 is dominant and ignoring the coupling with other partial waves.
Naturally their relations must hold for the p-wave contributions to forward
scattering, so all the p-wave terms disappear from the right of (18) and
(19). The correct(105)
amplitudes are considerably more elaborate than (22). The unphysical

digpersion relations for the p-wave partial

region integral contains coupling with other partial waves as well as

(105) See¢ for example J.Hamilton, P.Menotti, G.C.Oades and L.L.J.Vick,
Phys.Rev., (in the press).

(105)

effects of the T=0 and T = 1 n-n interactions . However, for values of
O)L between p and p + 45 McV, the terms given in (22) still provide a

rough approximation to thc cnergy dependence of the p-wave amplitudes.
This is because at such encrgies the long-range Born turms are large in
p-wave scattering, and they have the strongest e¢nergy dependence,

(+) (<)

We thercfore understand why C and C are constant up to

45 MeV. Howeverfor the purposes of this article this constancy is an
empirical fact found by fitting e¢qns (20) and (21) to the low encrgy
(106)

experimental data

(106) The argumcnts used in rcfcrence (105) and related papers to find
the n-n interaction from low c¢ncrgy m-N scattering are based on the s-wave
n-N phase shifts. The experimcntal daﬁa is corrclated using a more general

(=) Qstumes
form of cqns.(20) and (21) in which C are noﬁ(constant.(cf. reference(75)).

(i1i) Relations for the p-wavs scatturing lengths.
The C(-) Relations

(+) (-)

and C which are determined from the low

energy s-wavc experimental data, can also be used to give relations for

The quantities C

the p-wave scattering lengths. These are defined by aZT,2J= Lim RepZT,ZJ
Wy

Letting W -1 in the terms inside the square brackets in (18) and (19)

we get

o
A jdw"—"—' o, 3f - L (a,+20,+20,+44
c Tay) ¢ W T k) (e v atu ity W)
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3

Cl')= L){@/ o.‘”(ulj _ 67‘ __’_((
]

)
Wit 30-Ym) 5

“'II+‘Z“IJ- a." - Ja)}lzu)

where g:(‘l + %’, 0'(:) = %o : 0;) and 'y q' are the lab. system
energy and momwntum of the pion. Applying Theorem B of 52(ii) it is
seen thet there is no divergence at the lower end of the range of
integration in th. intcglals (this is the case a = % of Theorem B). From
the very extensive data on 0; and (. it is easy to evaluate the

integrals in (23) and (24) to high accuracy. This gives(73)

212

1 1
(1- 3( 1- =5
2M L..Ma

1 (-) ~(+)
-(2a33+ a31) -%3(c T’ )y - 0.166 £ 0.006 (25)

3

> J
c(“)) . LET(1- 4M )
1 .2
—_—)
ma

1

3

0.066% 0,004 - (26)

(2&13+a11) + V;,?.(ZC(’)+
1 -

(iv) The B(p,0) Relations

Letting W > 1 in eqn (3) gives

lim 1 2 .
Re B(1 0)/, . = f——-t s =(f -1 )
PUThM T 2, o Lo B 2 By, Py }
Thus 3
1 2) a
831- a33 = T ReB (1,0) - ;Mlz
A (%) a (27)
844 = a,‘}- T Re B (1,0) - ;15 J
M

where 8y a3 are the s-wave scattering lengths and the superscripts on

B are the isotopic spin values. It was secn in §§2(vi) and (vii) that
the dispersion relations (1.17) for B(_) (¥4t) converge and no additive
constant is required ( §2(ix)). Using B(?.)(1,0) = B*(1,0) and

B(i)(ho) = §B~(1,0) - % B+(1,0) we again relate all quantities to m =p
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elastic scattering(1o7). By (1.17) and (27) we get
2 a
(8,5 = 8y,) - —=& - EER (28)
35 1 2 2 *
(1= =) i
2£2(1 -":T') 4 3 1
(a13-a11) - -—~—-:——-—-—-—- = -—; - I +7 I, (29)
(1= —— LM
LM

. F3
(107) The subscripts : alwgys refcr to @ -p scattering

where o

I, = 21 (‘d‘u, [ In B+(w',0) Im B;(u'.o)
p Ln“ M ) i -
1

w' -1 w' + 1

and @' is the pion lab. cnergy.

The coefficient multiplying the s-wave scattering lengths in
(28) and (29) is so small that these tcrms are very accurately known.
It is quite sufficivnt to use our earlier values(75) a, = 0.178 b 0.005,
a3 = =-0.087 t 0,005 here, The integrals I+ are very closely related
to the integral (14) used in 9\4(1) in the determination of f2 and the
method of evaluation is the same. This gives(73)

2¢°

337 % T T 1

aM

0,079 I 0.003 (30)

1
_2rf(1-)
i
(1- > )
(v) The f%(u,o) Relation

-0.066 0,003 (31)

"

243 = 844

We now examine a relation between T = Yo and T = g p~wave
scattering lengths which, unlike eqng (25) and (26) above, do not involve
the s-wave curvature coefficients C' ’° This relation is obtained by
differentiating A( ¥,t), and B(v ,t) with respect to t, at t = O, and it
expresses a linear combination of a3}, a13 and fz in terms of a dispersion
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integral. The disadvantage of this rclation is that the dispersion integral
cannot be evaluated quite as accurutely as those we have previously discussed.
This is due to the fact, which was pointed out in _;53(iii), that the partial
wave expansions for Dl\/3 ¢ ond h):V4 p ¢ do not converge so well as the

expansions for A and B. As a result, our lack of accurate knowledge of the
details of the higher =N resonances is a strong limitation on the accuracy
of the derivative dispersion integrals.

Using eqns (2.31) and (1.30) and writing 1&2 = - t/u =
%q211-cos 8), simple manipulation gives

-

1 0A -6M
e ;-AZ ‘2=0 = ;r- l (wL-u::) fpj;(nuL+¢%)stlh+ 2(3"’L"2“’c)fD%
-2(}¢JL+2¢JC)fFS/1+ 10(2'uL- wc)fF,%' -1O(20L+ “c)fG’lz*' (32)

4
+1O(5wL-7wc)fG%.- 10(5wL+7uc)fH% + oenes ‘

1 08B 6 Iph 6 }' (B+M) £, =2(
28 = - - ~2(3M-2E)f,. . +
Tr 342 > G q; L DY D§
=0

+2(2E+3M)fF;‘ -10(2M-E)fF7‘+1O(E 20 £, A (33)

-10(5M-ZE)fG?,: 10(2E+5M)fﬁqi 4+ erenns J
Here wy, is the total lab. pion energy, and we have written wc for the

c.m. pion energy (1+q2)%.
Further, by egn.(1.30)

Re £1( v ,t=0) = - 2
2
q

where the dash denotes differentiation with respect to Az, and f{

Re {3f1+ +A58,, = 3t e

+

are the partial wave amplitudes. Therefore

/
ay5 = 843 = 3 Fefy)(1,0) (34)
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where as usual we put 4 = 1. For reasona of comvergence, as discussed

in 52(vi), we only consider the (-) charge combination. By eqn (1.26)

1 t 1
Refg') (1,0) = {ReA(‘)u,o) + Re{™) (1,0)}

bn(1 + %)

Differentiating the (~) dispersion relations (1,16) and (1.,17) with respect
to 42, and using eqn (1.34), we get

(ag5-a,s) - 2 =1 (35)
3313 T, 12
(1 + M)(1- ZM)
where
i
1 1
- aw  In 147 (0,008 (w,0)}
M (7% 4 12
1 w - 1
00 =) (*2]
- d ]
1{dw' ImB "~ '(w',0) 1 w '
= 0 = - = (o -0, | (236
Mj b W0 - T wen? T *]

!

+
Here w' and qi arv lab, values arnd o, are the total m -p cross-scctions.

We now examine the gccuracy with which T can be evaluated.

Very High Encrgies

(73) )

In the original evaluzation of T Woolcock agssumed that A

and B(-) were zero above 2.5 Bev. It is now known that this is not so,
and we have to cstimate the contributions to I from energies above 2 BeV.
For this purpose we use the high energy behaviour suggested by the Regge
pole method(108) (ef. §L+(i) (f) above). For ¥ > 2 BeV and small |t|
we assume that

a, (t)
A(“)( ¥,t) + B(')( Y o4t >~ iF(')(t)(-:;’-) P (37)
o]

Vo is a constant which is probably of the order of 2 BeV, and a'. (t) is the
Regge trajectory of the P -isobar. F(-)(t) can be determined from the shape
of the diffraction peak at 2 BeV, which we assume is approximated by eqn.(?7)

above.

(108) G.F.Chew and S.C.Frautschi, Phys.Rev, Letters 2, 394 (1961) and
8, 41 ( 1962)
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First we consider the derivative terms in (36). By (37)

(! (-)? e Y “p(o){ir(‘) ) 2 y }(38)
A o 570 2w E) _"/at tzow(o? Loay . ln(_;;)

(o}
For small |t| eqn(7) gives
In £(8) ¥ (1-a) ¥q R°( 1 + B t/g)

Hence
or') ’ 2
= R o 0.07 (39)
ot t=0 /F(-ZO) /8

where we use R = 0.74 as in §l+(i) (d) above. Taking the usual

. (108)
estimate c)ap /6 t , £=0 x~ 1/50u2 = 0,02, it is clear that the

term in Qua in (38) is only important for large values of ( l//yo).
5 t

Since the whole contribution to I from J >2 BeV is small, we can ignore
the du, term in (38) without appreciable error (i.e., the sharpening of
the ;ihracuon peak is not important here).

From (37) and (1.34)
Im f(‘)(wL,o) = M 50 () 2yep (O (40)
bnw Yo
(-)

where f is the (c.m. system) forward scattering amplitude for the (-)

charge combination. By the optical theorem and (1.31) this gives
F0) = (o o [ (81)
2 Bev
where q; is the lab. momentum and 0'(—)= o _- d+). Using

()J(-)(ZBeV) = 1.3 mb,{cf jfk(i)(f) and Fig.2) we get F(-)(o) = 1.0.
Finally, using a’,(o) X 0.5 in (38) we get

o0

=100 + w8 w00}
1] m{d (w0 +w WO » -0.001
" mer wt— (42)

The errors in this result could be as large as 40%.
The other high energy contrisutions to Iare easily examined.
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By (4.13) ,we
' (-)
T (W) g a2 0.16
2 BeV

so the last term in (36) contributes ~0.0006 to I. In fa (viii), we
saw that it is likely that A( y,t) does not attain the unitary limit for
large ¥ . If that is so, Im B(')Uu',o) x> ot (W),

Thus,
©0 o¢
(-)
1 4w ImB" “(w',0) ~ i dew' o'(')(w')
bn w' +1 M —-:,—'_
2BeV 2BeV

Hence the Im B(-)(w' , O) and ¢ ')(w') terms in (36) almost cancel each
other., Even if this conjecture about A(')( ¥ ,t) is not strictly valid,
the two integrals will be of the same order of magnitude and tend to
cancel. wWe estimate their sum to be O b 0.0003.

The Higher n-N Resonances
(73) (w',0) and Im B(')I(w ',0) up
to 2 BeV by eqns.(32) and (33) using the methods already discussed in

()1

Woolcock evaluated Im A
flf(i). The predominant contributions come from the n-N resonances, and

the non-resonant amplitudes or background, was fitted by a smooth curve

in the manner indicated in §'—+(i). The results are shown in Fig. 8.

(-)(w' ,0) is much larger near the (J, 3/,’)
ressnance at 180 MeV than it is near the n -p Dy, and Fs;, resonancgs at

600 MeV and 900 MeV respectively. However Fig. 8 shows that Im B(—) (w',0)

is much larger near the 600 MeV and 900 MeV rescrances than it is near 180 MeV,

From Fig. 7 we see that Im B

while Im A(-)'(w' ,0) has roughly the same magnitude near all three
resonances.,

This might suggest that the quantity I (eqn.(36)) can only be
evaluated very roughly because of our somewhat poor knowledge of the
600 MeV and 900 MeV resonances. In fact the situation is not toc bad
because (a) the denominator (w'a-‘l) in the first integral in (3%6) damps
down the effect of the higher resonances, (b) eqns(32) and (33) show that
in the range 600 MeV - 1.5 BeV there is considerable cancellation between
the contribution to ImA(')‘ and Im B(')1 from any partial wave .
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(The 900 Mev resonance contributes of the order of 0,005 to T, whereas
thevalue of I is about 0.08)

There are of course appreciable uncertainties in the moderately
high energy contributions to I. We must remember that, (i) the partial
expansions for Im A
(cf § 3(iii) for estimates of the rate of convergence) (ii) there is no

converge very slowly above 500 MeV

adequate phase shift analysis of the experimental data at 600 MeV or
(109)

above . Thus it is quite possible that a number of non-resonant partial

(109) See R, Omnes and G.Valladas (reference (85 ) ) for some discussion

"of the difficulties and uncertainties in such an analysis,

(=)'

and Inm B*~)

which is noticeably different from the smooth curve Woolcock used to fit the

waves with high angular momentum contribute to Im A in a way
non-resonant parts. For examplc, supposc that in an energy range of 100 MeV
around 1.3 BeV, Im f;;l = 0'1/2q' From (32) and (33) we see that this
contributes 0.0004 to I. Lack of knowledge of these higher partial waves,
together with the uncertainty about the n+-p system in the 1.2 - 1.4 BeV
range (cf § 4(ii)(d) above) could give rise to an error in 1 which we
estimate to be = 0.,003.
The Result
Using the values in Fig. 7 and 8 and the very high energy

estimates given above,i can be evaluated. Errors, in addition to those
mentioned, can also arise from the uncertainties in the predominant partial
wave amplitudes., We get the result

I=4+0.078 20,006

Inserting in (35) we get

2f2 o +
)m  ——t——ee = 0,078 = 0.006 (43)
(1) (1)@
M M
It should be emphasized that we believe that the error ! 0.006 includes
-)! -)?
(=) and Im B( ) at

moderately high energies due to the unknown role of higher partial wave

(8357245

the various uncertainties in the values of Im A

amplitudes.
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(vi) Rough Estimate of the p-wave Scattering lengths

We now derive rough estimates of the p-wave scattering lengths
by using eqns (15), (30), (31) and (43). First it is necessary to have

a value for a33' and for the present purpose we use the value obtained by
fitting eqn(5) to the experimental values of Oz given in Table 5, and
extrapolating to threshold. This gives(73)

8,5 = 0.220 I 0.008 (k)

The error here allows for some deviation from the form (5) at very low

energies (No deviation from (5) is detected between 4O MeV and 190 “eV).
Using £ = 0.081 ¢ 0.003 (eqn.(15)) and eqns (30) and (44) we

get

a5, = -0.034 I 0.0 (45)
Similarly egn (43) gives

a5 = =0.022 Lo0.012
Finally, eqns (31) and (43) give

a,, = -0.095  0.016 (47)

These results for a and a 1 depend very littl: on

y A,
the s-wave n-N data (we have nof1use;jeqns (;5) and (26) in deriving them).
They are obtained from dispersion rel.tions whose predominant contributions
are given by the total crovs-sections Cri and the resonant amplitudes, In all
cases the contribution of the (31’34,) resonance is much the most important.
The errors quoted in (45), (46) and (47) are obtained by assuming
that the errors in (15), (30), (31) and (43) are independent. This is not
strictly true, but it should be a good approximation. This is because

the largest errors arise from f2 and eqn.(43). The procedure

y @
( § L(i) ) for finding 2 is such tiZt errors in £ are largely independent
of errors in evaluation (43), and the same holds for a}}'

It is worth noting that if we were to change the value of f2
by Af;a, this wou.ld alter the values of 3z, by -2A1‘2. and 849 by
-l A£T,

Comparison with Experiment

and a

13

Little experimental evidence about the small p-wave phase

(110)

shifts at low energy is available, Barnes et al have examined u+-p

(110) S.W.Barnes et al. Phys.Rev. 117, 226 and 238 ( 1960)
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scattering at 24.8, 31.5 and 41.5 MeV. Assuming Gz, = 83 q3 their results
give a,, = =0,0k2 t 0.004. 1In fact the q3 dependence will not be quite
31 +
correct, and we suggest that these experiments give 85 = ~0.04k2 = 0.008.
(111)

Knapp and Kinsey have investigated m-N scattering at 30.0 an

(111) Knapp and Kinsey, Bulletin American Phys.Soc. No.5., p.434(1961)
We are also indebted to Drs. Barnes and Kinsey for further information

about these experiments.

31.5 MeV. Again assuming a31 3

(solutions I and II), Clearly these values of a31
our result (45),
Now we look at the experimental results for a,, and «

13 11°
(110) 5 dependence)

= a 1q3 their results give

+
agy = -0.038-0,008

are in good agreement with

Barnes et al results at 35.75 McV give (assuming q (112)

= -0,06% 0.0k, a -0.02 ¥ 0.09. These mean values disagree with

843 11~
eqn (31) which gives
+
843 = 8y = +0.073 Z 0.010 (48)

[/
Knapp and Kinsey(111)(again assuming q3 dependence)('l)get

(112) 1t is unlikely that the assumption of q3

3

dependence introduces any
large error at 30 MeV. The deviation from q
§ 5(iv) below.

dependence is discussed in

8,5 =+0.010 20,019, a,, =-0.169 * 0.037 (Solution I)
8,5 =-0.19 1 0.020, a,, = +0.235 I 0.0% (Solution II)
Knapp and Kinsey suggest that Solution II is preferable, because it gives

(113)

the best agreement with their charge exchange (n~ + p —» 7° + n) data

(113) The charge exchange data was not used in deriving their phase shifts.

Its only usc was in choosing between Solutions I and II.

at 31 MeV. Our result (48) rules out Solution II., Also (48) is not in
particularly good agreement with Solution I, but we note that even for

Solution I, is surprisingly large.

841

The Liverpool experiments at 97 and 98 MeV givé11u)

(114) D. N. Edwards et al. Proc.Phys.Soc. 73, 8561(1959). Also D.N.Edwerds
and T. Massam,private communications. We are indebted to these authors
for communicating their results.
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®31/q% = -0.029 ¥ 0.002, %*13/q° = -0.007 £ 0,004, %11/q°= -0.024%0,002.
These results for a3 and a15 could be in good agreement with our results
(45) and (46) if we assume there is a small departure from the q3 dependence
by 95 MeV. The % result i; only consistent with (47) if there is an

appreciable departure from q” dependence. We shall see in § 5 below that

the improved CGLN calculations do indeed predict the correct departure from
q3 dependence to give good agrcement between these Liverpool results and our
317 343 and &, (egns (45) (46) and (47)).

(vii) wWoolcock's Evaluation of the Parameters

values of a

Woolcock & used further relations and a morc sophisticated
method to find the best values of thc ? parameters: f2, the s-wave parameters
33, (+), C( ), and the p=-wave scattering lengths aZT,ZJ' We briefly

describe the method and give the results (where necessary the input data

31,

has been improved, and the results in eqn (49) arc slightly different from

(115))

the original results

(115) W.S.Woolcock, Procecedings Aix-en-Provence International Conference
on High Energy Physics Vol. I. p.459 (1961)

The following 1nput data werce used.

(1) The value £° = 0,081 ¥ 0,003 determined by the method of & 4(i)
(eqn (15)).

(2) The wvalue a, - a3 = 0,254 ¥ 0.012 from the Panofsky ratio

(3) The forward dispersion relotions (2.6) fitted to 18 accurate experimental

(116).

values of D+(AJ) or D_(w) up to 220 McV. These relations involve fa, a,

and a3 as parameters to be detcrmined. The dispersion integrals are
evaluated using the known data for O%.
(4) The sum rule (2.27). This involved £2 and (a,‘-a3

errors in evaluating the integral arec of course much larger here than in

) as parameters. The

the forward dispersion relations.
(5) 18 accurate experimental determinations of the s-wave phase shifts a1
or ag (up to 45 MeV) are fitted to the equations (20) and (21) offl(ii).
(+) ( ) arc the parameters which are determined.
(6) Egns.(25) and (26) which relate a ' c(*) (-) and £°

(116) This is a refinement of the work in ref(75) using more recent
experimental data on photo-production and the Panofsky ratio.

Here ay a3, C

2T,2J
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(7) The B(p,0) relations, eqns (30) and (31) involvin_ (a
and fe.(T= %2, g)
(8) The f; (#,0) relation (43) involving (333-a13) and f 2.
(9) The value 855 = 0.220 £ 0,008 (eqn.(4k4)) obtained by fitting eqn(5) to
the low energy values of Oz given in Table 3( § L(i))

(10) The value 8z = -0.038 ¥ 0,008 from the analysis of Knapp and Kinsey

2T,3'52T,1)

(11

Each picce of the data was given the weight p = 1/cr2 where ¢
is the appropriate standard error. Using an error matrix method the values

obtained for the G paramcters are

£ = 0,081 % 0,002

4 = 0171 ¥ 0.005
a? = -0,088 I 0,004
c$)s _o.ou 2 0,013

a

e

c*)os0.096 * 0,026 (49)
a5 = -0.038 I ¢.005

855 = 0.215 I 0.005

a,, = =0.101 1 0.007

8457 =0.029 ¥ 0.005

Comments

The errors gquoted for f2 and a are smallcr than those given

in §'4(i) and 4(vi) because of the extra izéigundent data which has been uses
here (in particular the s-wave data and the forward scattering data).

There are some small changes in the p- wave scattering lengths
21,24 compared with the valucs given in eqns (44) (45) (46) and (47). (These
changes are however well within the errors given in eqns (44) - (47), The
main reason for these changes are eqns (25) and (26) which relate the s-wave
C(+) and C(_)
experimental data, and using these values given in (49) and 2 = 0.081,
eqn. yields 2 835 + 85y = 0.392. On the other hand eqns (44) and (45)
yield 2a33 + 8, = 0.405. Thus (25) requires that both 833 31
reduced somewhat from the values given in (44) and (45). Similarly

inserting C(*), ¢¢") and £2 in (26) we get 2a13 + 8,4 = =0.159. On the other

and p-wave parameters. are determined from the s-wave

and a,, are
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hand eqne (46) and (47) give 2a13 + a,, ==0.140. S0 (26) requires that
a13 and 844 become a little more negative than the values given by (46)
and (47).

The error in the experimental value of a,, in eqn (44) is large
(% 0.008) and we might start the arguments in § L(vi) above from a33 = 0,215.
This would give a31 = -0.039' 315= -0,027, 844 = -0.100 instead of the
values in eqns (45) (46) (47). Thesec valucs are close to those in (49),
It is therefore clear that in Woolcock's method of determining the parameters
the experimental value of 353 (item (9)) plays a small rolc, He is in effect
determining 835 from the dispersion relution (25) and the experimental low
¢nergy s-wave data.

It might be thought better to omit item (10) (i.e., the

experimental estimate of a.,)  In fact omitting it causes hardly any change

51
in the results (49).
WOolccck(73) points out that the consistency of the data is
strong support for the assumption th:t thcre is no arbitrary additive
(=) (=)

constant in the sum rulc or in the B+, A and B

(cf§§ 2(iv) and 2(ix) above).

The low energy behaviour of the s-wave phase shifts obtained
3 ¢ ama o)
(20) and (21) is in good agrcement with our earlier parametric fit

dispersion relations

given by (49) in eqns.

by inserting the values for a, a
(117)

Here of course we deal with the phase shifts after the appropricte inner

(117)

Coulomb corrcction has been made. For very low cnergies (up to 15 MeV)

(117)  J.Hamilton and W.S.Woolcock. Phys.Rev, 118, 291 (1960). Sce
especially eqns(25) and thc broken curves in Fig., 2 of that paper.

the s-wave phase shifts hav:z the form

il B 0,171 = 0,024 ¢° ) a,, = 0.171 - 0.021°

2q . . 1/q
sin 2a or (50)
—5—2 = -0.088- 0,051 ¢ Gy = <0088 ~0.052¢"

These are in reasonable agreement with eqns.(27) of reference (45), but
(50) is an improved result and its derivation included some extra accurate

experimental results.
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(viii) Another Determination of the p-wave Scattering Lengths

Another way of obtaining information about the p-wave
scattering lengths is provided by the analysis of the =n=~N partial wave amp-
(118)

litudes based on the Mandelstam representation o The argument runs as

follows.

(118) J.Hamilton, P.Munotti, G.C.Oades and L.L.J.Vick, Phys.Rev,
(in the press)

The s-wave n-N =mplitudes can be anulysed using the accurate information
we have for the s-wave n-N scatturing up to 120 MeV, together with (a)
rough information on the s-wave n-N scattering at higher encrgies, (b)
information on the T = g , J = %, amplitude (as in § L(i)(a) above),
(¢) rough information on thv sm-1ll p-wave amplitudes and the higher n-N
resonances.

Inserting this data in the dispersion relations for the
s-wave n-N amplitudes we can deduce the contribution of the T=0 and T= 1 n-n
scattering to s-wave ®m-N scatt.ring, 2nd ultimatcly, obtain considerable
information about the T = O .:nd T=1 n-m scattering.

Next it is assumed that the T=0 n-m scattiring obeys a simple
(relativistic) effective range formula at low energics. This is merely done
to exclude «ny strange tchaviour of the T = O n-n phase shift, 6;0 at low
energies (such as J;o changing sign at a low encrgy). Also it is assumed
that the T=1 n-n scattering is dominated by a resonance in the region
24 £ t€ 30).

Now the inform tion about the m-n interactions which was obtaine
from the s-wave n-N dispersion relations is fed into the dispersion

relations for tne p-wave n-N amplitudes. Then it appears that, in effects1

we can predict(120)

the p-wave n-N phase shifts at low encrgies provided
we know their experimental values accurately at one energy. For the latter

purpose the Liverpool results(11o) at 97 - 98 MeV are used.

(119) For details see § 3(xi) of refurcnce (118)
(120) 1In practice, the low cnergy p-wave phase shifts deduced in § 5 below
are used, and the partial wave method suggests corrections to these

values at low energies.
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The results of this procedure are

8.31 = "00032
333 = 00219
a,, = =0,090 (51
a13 = -00016

The errors in each case are of the order of ¥ 0,008. These values are
somewhat in disagrcement with those in (49) but only in the case of a3 is

the difference very marked. It should be emphasized that these values in egn.
(51) arc obtained by a more complicated and less direct method than are the
values in eqn.(49)

(ix) Conclusions

The best values of fa and the s-wave n-N parameters are given in
eqn.(49), Concerning the p-wave scatt.ring lengths we must provisionally
accept the values given in eqn.(49) as being the best given at present by
using the experimental results and simple dircct theoretical techniques. There
is, however, a possibility, as indicated in the preceding section, that with
improved information these values will move in the direction of those given
in equ (51).

The fact that such consistent results can be obtained by using a
variety of dispersion relations derived from (1.16) and (1.17) is very strong
evidence for the validity of the fixed momentum transfer dispersion relations
in n-N scattering., The fact that the results (51) are so closc to those in
(439) is evidence for the validity ofthe Mandelstam relations as applied to
n-N partial wave amplitudes, at least for the values of the complex
variable s (eqn. (1.5)) lying within about 30 units from the physical
threshold s = 60, or from the crossed threshold s = 33.
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§ 5. Calculation of the Partinl Wave Amplitudes

The partial wave n-N amplitudes have been calculated by woolcoc§73)(7u)
at energies up to a few hundred MeV. The calculations use the (fixed
momentum transfer) dispersion relations (1.16) and (1,17) for A(y,t) and
B( yv,t) given by eqns (1.16), (1.17) and (2.36). In the case of A(+)(ll,t)

a subtraction is necessary (cf.j§ 2(vi) and 2(viii)). The pion-nucleon
parameters which have Yeen determined in § L4 are essential for these
calculations. As in § 4 the dispersion integrals are approximated by a
careful evaluation of the contributions from the various n-N resonances
plus a rough idea of the background, or non-resonant, parts of the
absorptive terms.

Here we give a brief account of the method and discuss the results.

We also study the accuracy which can be achieved and we examine the
practical limitations of the method.
(i) The Method

§ 3(v) we discussed the expansion of the partial wave amplitudes
f{+ in terms of the amplltudes £, (6= 0) and £, (6 = Q) and their derivatives
with respect to<A %q (1-cosQ) Using eqns (1 26), £, and f,
in terms of A(y ,t) and B()/.t) and these amplitudes satisfy the dispersion
relations (1.16), (1.17) and (2 36) (in the case of A(+)( ¥,t)). This is
the CGLN method )
make the approximations: (a) there is no subtraction in the A

are expressed

, but with considerable improvement in execution. CGLIN
(+) relation,
(b) in calculating s-wave amplitudes the d-wave corrections are ignored,
(¢) the dispersion integrals are given by the (3/2, 3/2) resonance alone,
except in the case of the s-wave amplitudes where Im fo+ is also included,
(d) kinematical factors are expanded in powers of (u/M), and only terms up
to order (u/h) are retained. (The CGLN results for p-waves are given in
eqn. (4.22)). Woolcock does not make the approximations (a), (¢) and (d).
In all cases he only ignores f-waves and higher. It will become clear
that these improvements are essential if reasonable accuracy is to be
achieved,

Woolcock uses eqns.(1.26), (1.35) and (1.36) to write
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Re £,(w;,0) = P-z-ﬁ-ﬂ [D(wL) - {uL -(w-M)}- Re B(Wy, o)/lmj

1
Re £,(4y, 0) = E = “ D(wL) +f~ +(W+M)} Re B(wy, O} ]

where D(W) ) is the forward scattering amplitude (in the lab. system).
(121) that D+( UL) obey the dispersion relations
(2.6) in which the absorptive parts are given by the total cross-sections
o (wL), also the absorptive parts Im B_ (w ,0) in the relations for

This form has the advantage

Re B+(NL, 0) have already been thoroughly mvestigated in § L(1).

(121) A further advantage in using eqn(1) is that the subtraction

required by the presence of A(+) is made more accurately in the case

of D, than it would be for A seselr.

The first derivative functions are given by

Re f; (w,,00= & ;wM - [ ReA! ( w ,0)+ (M) ReB'(wL,o)]

v E - M (2)
Ref2 (wL,o) = r[ ~Re A (ML,O) + (W+M)Re B'(wL,O)]

where the dash denotes diifferentiation with respect to A at Az = 4.
The evaluation of the first derivative dispersion relations has already
been discussed in §b(v) above. The A(+)'(L¢JL,O) relation requires a
subtraction (cf, §§ 2(vi), 2(viii) and eqns. (4.7), (4.8)). The
subtraction constant at threshold is given by the combination (a +2a,,)

33
of p-wave scattering lengths together with the value of B(+)(u,0) (which

(+) (122)}.

is given by the B dispersion relation

(122) Alternatively it is clear from eqn. (3.14) that the subtraction
_ (+)*
constant for f, twL,o) is given by (a,‘3 + Zaﬁ).

Finally to include d-waves, it is necessary to use the second
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derivative functions.

" E_'_M 1 1" "
Re f,‘(ldL,O) = 50 o Re. A (wL,o) + (W=M)Re B («JL.o)]
. (3)
Re £, (NL,O) = g—w- L—[ -ReA' (wL,o) + (W+M) Re B (wL,O)]
Typical dispersion relations used here are (with p = 1)
<0
1 (+)" 16£° 2 (a1 3" ,0)
Re B (w,,0) = - + g .
In L' M(“,L_m)z “ In (w'2. " 2
oo "M
b %gl Im B(+)(tu'lo) - 2 {_dw' Im B(+)(w',02
™ | In . 2 Z | T . 3
/ (w' + ey) ™ ; (w' +w) h)
00
" aqLZ ' (+)" w'
ﬁ; Re A+ (w;,0) =K+ —=—P %;:—‘-’ Im A" (w',0) P RN
/ e W)
+ ._l’_ aw  Im o) @ ,0) 2 dw' Im A (w',0) (5)
E R RTI 2t 3 3
w'+mL) nM Ln (W' +62,)
1 1 L
In the A(*)" relation the subtraction has only been made in the first

integral., K is the subtraction constant, and it can only be evaluated
from experimental knowledge of the (+) combination of d-wave phase shifts.

(+)"

The need for subtraction in the A rel-tion means that the system of
equations is not closed. Further, as we shall see, the present
experimental data is not good enough to determine K with accuracy.

The absorptive parts in the first integrands in eqns.like (&)

and (5) are determined from the experimental data using

a T2 q 2 (6

- 120(“%4'30) )M ka l’ao (SML - 3‘00) MfG%‘ - e e e
q



Y

£
q q q

(7
12 420
+ —q% (L’M-"}E) fG,’/‘ - ;g— (BM—BE) fG &z + ¢« o 0

where wc is the c.m, pion energy, and q is the c.m. pion momentum.

The absorptive parts Im A" and ImB" are evaluated using the data on

the resonances and the optical model discussed insfé 4(i) (d) and (c).

It is obvious by comparing eqns.(6) and (7) with (4.3) and (&.32),(4.33)
that the errors in Im A" and Im B" due to ignoring higher partial waves
are more serious than in the case of Im B, Im A' and ImB'. At the best
the determinations >f Re f:( wL,o) and Re fg(uL,O) are only rough, and
the information obtained about the d-waves is little more than qualitative.

(ii) Errors arising from Evaluation of the Dispersion Relations

wherever it is practical Woolcock subtracts the dispersion relationms.

For example the dispersion relations (2.6) give(73)
(+) ( a (. (¢ it
D+ (“, =D+)(p)+__1_4_fdw' _ld_: U lU') + L
L 2n® a w1 M(1-K°) (w2 2= k%)
1
bl (+) (+) 9
Y [ Caw 1 fwew) &) )+ e
A — PRI M 2 °ot(z2)
an ) q' (w -tci Y w'+1) ZqL ZqL 2
1
o0
dw' W o'(‘*)(w-)
+P 3 122
w ¢ w - (8)

0o

where W, is a constant and /< u.)o < LUL. Also wo = secGo. and W, 9y §
W'y, q4' are lab. values. The form of the first integral inside the square
bracket ensures that there is no difficulty for '=1.
Similarly the B(+) rslation can be wrig‘ten in the form
1 )¢ y el 20y (Caw' Im B (w',0)
T Re W0l = - 2l F T 12
(A - q

, [ 1
2W.q (+)
+ L°L dkﬁ' Im B QW'!Oz
g 12 W'y (9)
1
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The subtraction terms in eqns.(8) and (9) are written in integral form,
They are related to the p-wave scattering lengths and C(+) by eqn.(4.23)
and eqrs. similar to (4.28) and (4.29). The integral form of the subtraction
term in eqn.(8) is the most accurate value of this term and its value,
deduced from (4.25) and (4.26) is used. For the subtraction term in eqn.
(9) the p-wave scattering lengths given by (4.49) are used.

The advantage of using subtracted dispersion relations is that for
low energies (up to about 100 MeV) the errors in the partial wave amplitudes
relative to the scattering lengths determined in §h~will be small. Also,
any errors arising from the evaluation of the principal value integrals are
reduced considerably. The disadvantage of this method is that at higher
energies the errors arising from the subtracted terms themselves can become
large.,

The effect of subtractions in reducing errors in evaluating the
dispersion integrals is important here in connection with contributions
from the n-N resonances above 500 MeV. There are further factors which
tend to reduce the errors in these contributions. For example, Omnes
and Valladas(ss)
appreciable amount of D 5ﬁ’amplitude in addition to the resonant Fqﬁ
amplitude. From eqns.(4,32) and (4,33) it is seen that the numerical

and kinematic factors in the expansion of Im A' and Im B' already reduce

suggest that at the 900 MeV resonance there may be an

the size of the D‘lz contributions relative to the Fzﬁ contributions.
Eqns.(6) and (7) above show that the same is true for Im A" and Im B",
At 600 MeV Omnes and Valladas(ss) suggest that in addition to the resonant
D3/7. amplitude there is some P3/2 amplitude and only a small amount of D;,‘
amplitude. Again eqns(4.32),(k.33), (6) and (7) show that this situation
is favourable for accurate calculations., (For the amplitudes D and B the
absorptive parts are the total cross-sections O+ and Im B +. The values
of O+ are well known and the accurate evaluation of Im B+ has been discussed
in §1K1)). The result of all this is that the dominant errors in
calculating the dispersion relations at least up to 350 MeV, will come from
the subtraction terms.

We now make rough estimates of the probable errors in Woolcock's
evaluation of the dispersion relations. First consider Re f (+)(09L.0)
and Re fé*)(cuL,o). The subtraction term in eqn.(8) for D(+3(u£) is
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evaluated from (4.25) and (4.26). This gives q;2(0.133 ¥ 0.004). This
leads to an error + qL2(0.004) in Re f1(+)(hJL.0) (relative to Re f1(+)(1,0))
2(*)(«&”0).
The second term on the right of eqn.(9) for Re B(+) is approximately
%GUL(a11-a13 + 2a31 - 2a33). By eqn. (4.49) this gives -0°L(O.38710.00?).
Z?The values given by eqn. (4.52), or (4.44) - (4,47), or (L.51), differ
little from this value_7. By (1.31) and (1.32)

Wo- (W - M) = (E-M)WM = o/

on using E-M = qa/ZM (qL

Thus Re B(+) contributes an error in Re f(;)((oL,O) (relative to
Re f1(*)(1,o) ) of £ ;q,q(0.0035). Similarly the error in Re f§+)00L,0)
is 1%4%(0.0035).

The total errors in Re f1(+)(“)L'O) (relative to Refg+)(1,0) ) at
100 MeV and 200 MeV are thus estimated to be ¥ 0.015 and b 0.05 respectively.
> a0
at 100 MeV and 200 MeV are & q2(0.006) and ¥ q2(0.008) respectively.
Between 200 MeV and 350 MeV, D(+) (“i) can be calculated more accurately
from egns.(2.6) than from egn.(8). Siiuce the errors in ReB(+)
this is little help. At 300 MeV the errors in Re fg+)(aJL,O) and

Re f2(+)“°L'°) are ¥ 0.08 and ¥ ¢°(0,011) respectively.

and a very small error in Re f

and q are the lab, and c¢.m, pion momenta).

In each case the error from Re B is dominant. The errors in Ref

are dominant

In the (-) case the subtraction term in the equation for IDb%tuL)
islquLa(-O.OBB : 0.003). The subtraction term in the dispersion relatisn
for Re B(')/an is given by (4.30) and (4.31). It is ;3 (0.145%0,004),
Thus the error in Re fg')(ui,o) is ¥ ULqLa(O.OOB) and the error in

Re f (')(wL 0) is 2 qa(0.00Z). At 100 MeV and 200 MeV the errors in

Re f1-)(uJL:O) are thus b 0.010 and : 0.035 respectively, Between 200 MeV
and 350 MeV we can calculate D(-)(tuL) more accurately from eqns.(2.6),
and we estimate that the error in Re f1(')(uJL,O) at 300 MeV is 2 0,04.

The errors in the first derivative relations are more difficult to
estimate. Using the discussion in § 4(v) and eqn(2), we estimate that the
errors in Re f1(+)'(uvL,O) and Re f1(')'(;dL,O) (relative to their values
atiuL=1) are < 0.003 qu and £ O.OO}(«JL-1) respectively, For Re f2(+)(uL,0)
the errors are & 0,001 qz. The errors in the second derivative relations

are closely related to the problem of the higher partial waves, and they will



be discussed below.

Errors Produced in Re 8, and Re f}

The effect of these errors on the calculation of the s-wave amplitudes
. m 1 3
at 100 MeV and above is serious. We write 85 fo+ (T = /2' é) and

(=)

]

use (3.15). Consider the errors due to Re f1 which are dominant. They
give errors of : 0.025 and X 0.018 in Re 8, and Re 53 respectively at 100
MeV. 1In fact we shall see in §'5(iv) below that the difference between the

predicted values of Re s, and Re s3 at 100 MeV and accurate experimental

values is very small (eqls.(1§a) and (12b) below). This suggests that the
errors given above for Re f1(')(LdL,O) are too large. This could be
partly due to the crude method used to estimatg the errors, and the fact
that we have switched back and forts between = - p , (¥)and isospin
integrals and amplitudes.

In view of this and the good agreement of the s-wave predictigns at
100 MeV it is realistic go reduce(123) the errors quoted for Re f1(-)+by a
factor 3, Since the B(') integrals sive+the largest error in Re fa -
we shall also reduce the errors in Re f, “'by a factor 3.

(123) Certain adjustments are made above 200 MeV.

Thus the Re f1(+) errors at 100 MeV, 200 MeV and 300 Me¢V become b4 0.005,
$0.017 and ¥ 0,04, Corresponding Re f2(+)
% 4%(0.003) and ¥ ¢°(0.004)., For Re f1(') we have at 100 MeV, 200 MeV
and 300 Me, ! 0,003, I 0:012, ¥ 0.02, and the Re fa(") error is & q2(0.001)

The Re £, =) and Re f, =) errors remain as above.

errors are = q2(0.002).

(1ii) Errors arising from Higher Partial Waves

(a) F-wave corrections

Partial waves with {23 are neglected in this treatment. The
corrections due to f-wave @n be seen by inserting f-waves in eqn (3.14)
and solving to get the corrections to (3.15). This gives the following
expressions for the partial wave amplitudes,
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l’, "
f2+ = ( q /60) £, (o) - 7“13+
2 ] "
£, = -(q7/g) £, (0) + (a'/¢y) £, (O) - 5ty = 2f3+
2 [ 4 "
£, = -(@/B)(0) - (2%, ,)(0) « £, v 20 £, (100
! 1 1
£, = 1,000 ~(a%/6)1, (0) + (a¥/2)2,"(0)-(a%/, )2, "(0) + 108, + w1ty
2 ' 2 1 b "
£, = f1(0) + (q /Z)f‘l(O) - (q /6)f2 (0) +(q /6)1'1 (o) - 5f3_-50f3+
(1) (M), 2 (1) 2
We shall ?;? tﬁe notation BZTT= £O+, Por,q = £,.°/4% Por,3™ RVAR
Gp,3 = f27/0 dpp 5= B /0

little is known about f-wave phase shifts, so only rough estimates can
be given for the corrections they produce. The analysis by Foote et 31(12“)
of nt - p scattering at 310 MeV suggests that the f-wave phase shifts could
well be as large as =0.5° at 310 MeV (Solution SPDFI). Such f-waves give
corrections 0.15 to Re S5 0.025 to Re pZT,aJ; 0.002 tg Re d2T,2J at 310
MeV. Assuming that the f-wave phase shifts vary like q' below 310 MeV,
the corresponding corrections at 200 MeV are 0.03 (Re 85op ); 0.008
(Re pZT'aJ); 0 001 (Re daT’ZJ). At 100 MeV they are 0.004 (Re s
0,002(Re pZT,BJ); 0.0006(Re dZT, ZJ)'

It will be seen :hat this f-wave correction to the s-wave amplitudes

ZT);

is the same size as the estimated value of these amplitudes at 310 MeV
(see below), and is about 25% of the s-wave amplitudes at 200 MeV.

Also at 310 MeV the f-wave correction is larger than the estimated size of
several of the p-wave amplitudes. Mcreover the f-wave phase shifts might
be larger than O.5° at 310 MeV(124), and it is also far from certain that
g-waves cause no trouble (cf.eqn (10)).

Clearly, unless there are special reasons for believing that in
certain cases they are small, the f-wave corrections make the calculations
valueless at moderate energiés aﬂd above, This is merely a practical
example of the considerations given in § 3(v)., Because of the poor
convergence of the series(125) in eqn (3.15), it is not expected that the
improved CGLN method of calculating partial wave amplitudes will he

(125) See ‘f 3(v) for further discussion of these points.
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accurgte for energies above 120 MeV, and it may be useless above 150 MeV,

We shall examine below the exceptions(to this rule in the case of the (=)
+)

charge combination and also for the f2

amplitude.
(v) D-waves

The subtraction constant K in the dispersion relation (5) for
A(+)"(wL,O) has to be detcrmined from the experimental information

on the d-waves at low energy. By eqn.(6), if we ignore f-waves,

-+ Re A(*)"auL,o) = f% %fg— Re ngZB (11)

and
(+) _ 12
Refn% = g-q( sin( 2 815) + 2 sin(2 835))

Foote et a1'12*)(SPDFI) find 63$= -4,9°% 2.2° at 310 MeV, and the snalyeis
(126) suggests that &‘5 = 1.50 t2.0° at 310 MeV, From these

values, using eqn(11), the subtraction constant K in eqn.(5) can be

of Zinov et al

determined.

(126) V.G.Zinov et al, Soviet Phys. JETP 11, 1016, (1960)

Unfortunately the errors here are considerable. First, if the
f-wave phase shifts at 310 MeV are of the order of O.5° as suggested by

(124), eqn.(6) shows that they could cause

the analysis of Foote et al
corrections in Re A(+)"(31O MeV,0)/bn  which are as large as the d-wave
contribution given by eqn(11). Further, eqn.(6) suggests that the g-wave
contribution may also be important. This is in line with the discussion
of § § 3(iii) and (iv) which indicates that the convergence of the series
(6) for Re 44" is slow at 310 Mev.

Next, the errors in the d-wave phase shifts at 310 MeV are large.
;i (310 MeV) = =0.021% 0.015. Suppose
there is an error £/ in our estimate cf Re fé:) at 310 MeV. By eqn(10)
this will give rise to an error =~ 1OA(q/a.17)L& in Re fc(;)(wL) and an

error £ 5 Aqa/(a..]?)‘t in Re fg:)(“L)/qg.

The values quoted above give Re f(

As usual q is the c.m, momentum
and the unit is 140 MeV/c. With 4 = 0.015 the errors in Re féi) are
£ 0.0, ¥ 0.06 and ¥ 0,15 at 100 MeV, 200 MeV and 300 MeV respectively.

For Re f1§*)¢0L)/q2 the errors are ~ 0,004, = 0,010 and 2 0,016 at 100 MeV,
200 MeV and 300 MeV respectively.
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The other errors in the evaluation of relations (4) and (5) are
far less important than the errors in K. 1In particular the contributions
()" and Im B(+)"
sized fractional errors in the evaluation of these terms can be tolerated.
It should be noted that by eqn.(3) the error in Re f§+)"(aJL,O)
caused by an error in the subtraction constant K is much smaller than the

"
(+ because of the factor(E-M)/2W in the second
(+)"

from the integrals over Im A are small, and moderate

error produced in Re f1
equation of (3). The ratio of the error in Re f§+)" to that in Re f,
is qa/hM2 = q2/180' Thus even at 300 MeV errors in K are unimportant for
Re f2(+)", and thcrefore they are unimportant for Re(fgi)- fi(t))"‘“ Vg
(iv) Results up to 120 MeV &‘fﬁ"f:',

The most serious of th¢ errors we have discussed is that:h1§5(iii)(a)

above. Due to the difficulty with higher partial waves and the poor
convergence or lack of convergence of eqns,{10), the improved CGIN method
for predicting all the n-N s- and p-wave phase shifts from the dispersion
relations cannot be trustcd at e¢nergies much above 120 MeV, On the other
hand the errors appear to be reasonably small u; to around 100 MeV,
and in that r.gion the results of the method should be reliable,

The calculations were made using the n-N parameters given in eqn(4.49).

The results for Re By Re § ., and ke Pop g 3re shown in Figs. 9, 10, and
]

11 (only those parts of thejplots up to 120 MeV are relevant here)., We
shall compare the predictions with the accurate Liverpool data(77)(11u)
at 97/98 MeV. The errors in the theoretical values are those we have
estimated above in §§5(ii) and (iii).

S-waves

For the s~waves at 100 MeV the theoretical values are

Re s, = 0.129 I 0.015, Re 55 = -0.133 I o.014 (12a)
The experimental values at 97/98 MeV are
Re &, = 0,123 % 0,006, Re 85 = ~0.135 % 0.003 (12b)

These are in good agreement, and there is also good agreement with the
accurate experimental values at lower energies. The curves in Figs.9 and

10 show that (up to 100 MeV) the dispersion relations predict the steady
decrease in Re s, and Re 53 from *he threshold values a,s= 0.171 : 0.005,

and 63 = -0.088 - 0,00k, This decrease is of course already well known from
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the semi-phenomenological fits to the date which were discussed in §'+(ii).
The part of the total errors in these s-wave amplitudes at 100 MeV arising
from neglect of the f-waves (§ 5(iii)(a)) and the uncertainty in K
(§5(1i1) (b)) are * 0,012 for Re s, and Re 85

P-Waves

At 100 MeV the calculated values are

Re py, = =0.023 % 0,006  Re py, = -0.017 % 0,005
Re Pq3 = -0.003 ¥ 0,005 Re P33 = 0.250 % 0.005 (13a)
and the experimental results at 97/98 MeV are(77) (1MW)

Re p11 = =0,02k : 0,004, Re p31 = «0,027 b4 0,002

Re p,; = =0.008 I0.004, Re Pys = 0246 ¥ 0.003 (13b)

There is good agreement here between the experimental and calculated values,
except in the case of Re Pz A recent experiment at 120 HeV(1Z7) gives

Re p,, = =0.023 ¥ 0.006, Re Py = 0.228 ! 0.006. From Fig. 11 it is

seen that these values are in reasonably good agreement with the

predicted values, but again there is a suggestion that the calculated

(127) A Loria ct al, Nuovo Cimento 22, 820 (1961). We use their

final values a,, = -2.60° ¥ 0.69°, «,, = 31.67° ¥ 1.01°.

31 33

value of Re p31 is a little too small., The largest part of the errors
in Re Pq4 and Re Pz, at 100 MeV is due to the error in K which was
discussed in § 5(ii). Probably this error actually accounts for the
small discrepancy in Re p31 near 100 MeV,

It should be emphasized that these results reconcile the
experimental values of Re PaT, og near 100 MeV with their threshold values
8p, 27 8 given in §‘h For Re p,, in particular the 100 MeV and
threshold values are very different. The results.for the P33 amplitude
are in good agreement with the experimental values given in §4(1i)(a)
above (up to 120 MeV). This is merely a further proof of the validity of
the fixed momentum transfer dispersion relationms.
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D=Waves

Because of the uncertainties in the subtraction constant K
( § 5(i1i) (b)) no useful and reliable results can be deduced for the
individual d-waves. We shall see below that there are useful predictions
for certain combinations of the d-wave amplitudes.

(v) The (-) Amplitudes

In §3(v) we showed thut the amplitudes for the (=) charge
combination are a special case. Assuming that thecre is no appreciable
T=1 n-n interaction in the range ‘me £ t 5 15\12 ( and the experimental
investigations of T=1 m-n interactions appear to bear this out(ss)), then
in the case of the (-) amplitudes the eqns.(3.15) should converge well up
to 250 MeV, and should also give useful results up to somewhat higher
energies (say 350 MeV).

This means that for the (-) amplitudes the f-wave corrections are
expected to be sm2ll up to around 300 MeV. There is a further reason why
the improved CGLN procedure should work much better in the (-) case than
in the (+) case up to these cnergies. We saw in§5(iii)(b) that no

Q)"

subtraction constant is required in the dispersion relation, and

therefore the large errors arising from uncertain experimental informution

about d-waves arc avoided.

(=) (=)

end B

should not be v.ry importent, -nd it is possible to meke predictions about

The remaining errors in the A ' dispersion relations
the (-) combinations of d-wave amplitudes. Unfortunately the results do
not agree with the few experimental values which are available, and we do
not reproduce th:m. Any error in the d-wave results will cause errors in
the other (-) combination partinl wavc predicitions, and the s-wave (<)
amplitudes at the higher energies are particularly subject to this type of
error (it is readily see¢n from § 5(iii)(b) how this comes about).

The results for Re (s1-53), Re (p11-p31) and Re (p33-p13) are
shown in Figs. 12, 13, and 14 for energies up to 350 MeV. Except where
otherwise stated the values of the parameters in eqn.(4.49) are used(128).
We shall briefly discuss the results.

(128) There are some small changes from Woolcock's original values given
in references (73) and (74). These are due to the fact that in preparing

§h above the parameters were critically examined and reassessed, giving the
values in eqn(4.49) above. The =ssessment of the errors in the
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phase shift predictions in § 5 of the present article, is quite new,

Re(a1-s})
The predicted values are shown in Fig, 12 together with the
"
predictions of Hohler and Dietz(129)and of Finn(69). We compare

(129) G. Hohler and K. Dietz, 28 fur Phys. 160, 453 (1960)

the predicted values with the experimental results at 224 MeV and
310 MeV, These zppear to be reasonably accurate experimental results, At

224 MeV the experiments give(130) a, = 1%,8° 1t 3.50, @ = -15.5° ¥ 5.5°, 80

Re (51-53) = 0.282 ¥ 0.0%9 (1ka)

The predicted result is
Re (s,-s5) = 0,269 I o0.050 (14b)

(130) J. Deahl et al Phys.Rev. 12k, 1987 (1961)

An estimate of the f-wave and d-wave error is included in (14b)(1312
At 310 MeV Foote et a1(124) give a, = -17.2° £ 2.6° (SPDFI).

From the several results of Zinov et 31(226) we infer that at 310 MeV

= 24,0° ¥ 3° (Solution a

%4 SPD’. These give

Re(s,-s,) = 0.301% 0.020 (15a)
The predicted value (131 is

Re (8,-85) = 0.27 2 0.07 (15b)
(131) That is we take the error in Re fg-)(uaL,O) to be & ¢0Lqi(0.001) up

to 200 MeV and : 0,013 at 300 Me¢V; the extra error due to d-waves is
(<)

discussed in the section on d solutions below.

The agreement between the experimental and predicted values is
reasonably good, particularly at 224 MeV, In judging the accuracy of the
310 MeV prediction it is worth noting that an error of % 1.0° in the
predicted value of ( 815 - ‘35) (where 615 and 535 are d-wave phase
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shifts) would give an additional error of % 0.08 in (15b)(132). The
agreement in eqns (14) and eqns(15) supports the argument we gave at the
beginning of this section for believing that the f-wave (and d-wave)
errors are reasonably small in the (-) casc.

We now make two further deductions.,

(126)

(a) The bepp Solution of Zinov et al gives a, < O between 240 MeV

and 333 MeV, Since therc is no doubt that a3 < -10° in this region,

the ngD solution is ruled out, even if we allow the full error in
(2

Re £7" (w,0), i.e., t 0,12 in Re(s,=s,) at 300 MeV as in § 5(i1) above.

1 3

(132) We shall show below that % 0,08 is the maximum extra error we

would expect in (15b) duc to errors in the d-wave calculations.

(b) In Fig. 10 the broken curve from 120 MeV to 250 MeV is a smooth
continuation of th¢ predicted value of Re s, drawn to pass through the

310 MeV experimental value(12u)

. Now using the values of Re(s1-sj) from
1 between 120 MeV and 350 MeV are found. These

are shown in Fig. 9 by the broken curvc, Although these values of Re s

Figs12., the values of Re s
1
are necessarily somewhat rough, it would bc valuable to test them by

precision experiments in the 250 MeV - 350 MeV region.

Re (py, 'p§1)

The predicted values arc shown by the solid curve in Fig. 13
together with a few accurate experimental values, There is good agreement
with the experimcntal values. Typiczl results are those at 224 MeV and
210 MeV, At 224 MeV the experimental results are(130) @pq = 5.9° : 4.50,
= -2.1° b4 5.50, giving

Gz4 \

Re( p11-p31) = 0.024 = 0,018 (16a)
The predicted value is

+ .

Re( pyy =Pg,) = 0,015 = 0.00°¢ (16b)
At 310 MeV Foote et a1{12%) gave a, = -2.9° 2 4,0° and the results
of Zinov et a1(126) suggest a,, = 8.0°tu,0°(a SPD solution), This
gives
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The predicted value is
+
Re(pyq-Pgy) = 0.018 = 0,00 6 (17v)

In accordance with our gcneral assumption about the (~) amplitudes,
the d-wave and f-wave errors are taken to be small in (16b) and (17b).
These calculations use the parameter values in (4.49). So
84q = 83y = 0,063, If instead we used the value 849 = 83y = -0.068 which
is well within the errors given in (4,49) the predicted values would lie
on the broken curve in Fig, 13. The latter curve gives somewhat better
agrecment with the 97/98 McV result, and gives 0.018 ¥ 0,004 at 224 Mev,
and 0.022 £ 0.006 at 310 MeV, instead of the values in eqns. (16b) and
(17v).
Again the assumption that the d-wave and f-wave corrections are
unimportant for the (-) amplitude, st least up to 300 MeV, appears to be

justified. On the basis of th¢ predicted values of Re(p11 - p31) further
(73)

(126)

conclusions can be drawn
(a) The bSPD solution of Zinov et al gives Re(p11 -p31) < O between
240 MeV and 330 MeV, This is definitely excluded by the predicted values.
(b) The experimental results betwoen 224 MeV and 333 MeV show that a31 is
negative, and it appears to be butween -2° and -4° over that range. Then

Figs. 11 and 13 suggest that a,, changes sign below 200 MeV, and attains

11
positive values between 5° and 8° in the range 220 MeV to 330 MeV,

Re(pzz -p12)

The predicted values (based on the parameters in (4.49)) arc shown
-p31) with
one exception, Just above the resonance (200 MeV - 250 MeV) there is some

in Fig. 14. The errors arc much the same as in the case of Re(p11

uncertainty about the value of U3z and this can have an appreciable effect

on the dispersion integrals.

(130)

The experimental value of Y at 224 MeV (a33= 12.3° 1 3.0°%

combined with the predicted value of Re(pjj- ) suggests that a_, is

P
I (130) |7

positive and equels a few degrees. The experimental value of Q3
at 22k MeV is 0° I 2.0%, so there is a small discrepancy here. At 310 MeV

there is agreement to within the errors. The experimental value(12“)of

_ 0+ o g0
Gy = 135.0° = 0,6 plus the predicted value of Re(psj_p13) gives
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a13= 2.3o ¥ 2.0°. The values of Zinov et 51(126) suggest that

o + (]
a13 = «2,0 - 2,0,

It is clear that again the (-) relation is working well up to about

300 MeV, and it appears that the phase shift a,, differs from zero by

13
no more than 2° from 200 MeV up to around 300 MeV. (Again the solution
SPD of Zinov et a1(126)1s excluded since it gives values of a13 between

7° and 15° over the range 240 MeV to 333 MeV).
The d(-) Solutions

There is not sufficient reliable experimental informetion to
compare with the predicted values for the (-) combinationes of amplitudes.
The good agreement of Re(p11 - p31) and Re(p33 - p13) with the experimental

values in the 300 MeV region indicates that the extra error in the
predicted value of Re(s - 83 ) at 310 McV (cqn (15b)) arising from d-wave
errors cannot exceed % O o8 (Thls is seen from eqn.(10), remembering
that Re(p11 - p31) and Re(p33-p13) are not in error by more than 0.008 at
310 MeV). In evaluating (15b) we allowed = 0.06 for this extra error,
and a corresponding value in (14b).

(vi) The f2(+)Amplitudes

———————

An additional piece of information, which is fairly reliable up to
]
about 230 MeV, can be obtained from the fé+)GUL,O) and f§+) @JL,O)
amplitudes. By eqn(10)

2 ¢
£ = £y, = 5,000 + (a7/2) £, (0) + q(f5 - £3) + . . .

£, - 1, =(a7/6) £30) - 5(E5 = £5) + o - . (18)

There is reason to expect that the effects of d-wave errors and of
corrections due to f-waves and higher amplitudes are not so important in the
(+) case of eqns.(18) as they are in the original equations (10). This

is seen by considering the eqn (cf.(1.26)):

B L £ ren (w00 + (W) Re B (w00 } (180)

us

Re f &uL,O) =
and equation (2). Estimates show that at most emergies up to 250 MeV
]
(W) Re B'*) is much larger than Re A, and (wa) Re B*)'is much
1
larger than Re A(+) « Thus up to 250 MeV the predominant contributions

to Re f2(+) and Re f2(+)' come from the B(+) terms.
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Now we look at the arguments in §3(v) concerning the convergeuce'
of seriss like eqne(3.15) znd (18). The convergence is governed by the
value of yo(s), the radius of convergence in the cos 6 ~plane for the
real parts of the amplitudes (¢f, Table 2), To get good convergence we
required a value of yo(s) close to 3, or greater. The value of yo(s)
is determined by the nearest singularity in the channel m+m-» N+N.

Since the A(+) terms in eqns.(2) and (18a) are small below 250 MeV,
we assume that the higher partial wave corrections which they produse
in eqn (18) can be ignored. Now the A(+) amplitude is related to the T=0,
J=0, 2, . . . m 1 states, but the B(+) amplitude is related to the T=0,

J=2,. . . nem states 192, It is known''8) that the T=0, J=0 m-x

(133) See, for example, eqn (36) of J.Hamilton and T.D.Spearman,
Annals of Phys. 12, 172 (1961)

interaction is strong for low values of t ( t=5 or 6u2), but the results
of Atkinson(ﬂu) suggest that the T=0, J=2, n-n phase shift 8; does not

(134) D. Atkinson, Phys.Rev. (In the press). It should be pointed out

that Atkinson's results do not depend on any data derived from the fé”

amplitudes by the method of the present section.

reach 20° until t 12u2. If we ignore the T=0, J=2 n-n interaction
when 80 < 20° s then the ncearest singularity of Re B( )is given by cos @
=1+ / 2 (cf. eqn.(3.12)).

\rhth these approximations the value of ¥, (8) for the Re fa( +)
amplitude is 4.0 forw 150 MeV and 2.5 for wL 250 MeV. Thus up to
about 250 M.+ the f-wave (and higher) corrections to eqns.(18) for the (+)
charge coubination should be small, Further advantages of eqns.(18) are:
(a) double derivative rclations do not appear, so the main source of d-wave
error is removed, (b) the factor (E-M)/2W tends to suppress the errors in
evaluating the dispersion relations (1) and (2), as we saw in § 5(i1).
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Results for Re Ié+)

We only give some of the results for the p-wave case (i,e. the
first eqn. in (18)). At 200 MeV the predicted value is

Re (pyq + 2D5y = g3 = 2 P33) = =0.019 ¥ 0.008 (19)

The error here is only that discussed in§5 (11) for the evaluation

of the various dispersion integrals., If it were not for the special
arguments given above we would have to ascribe a much larger error to

allow for f-wave effects (this can be seen from the estimates given in
§5(iii)(a)) Using experimental values' 139 we have Re P3q = -0.010% 0.004.
Combining (19) with the predicted values Re(p,, - ps,) = 0.012 % 0.003,
Re(p33 - p13) = -O 010 o. 002, we find Re P33 = -0.003 ¥ o. ook, and

Re P43 = 0.007 ¥ 0.006. These give values of as3 and a3 which are in
good agreement with the experimental data,
At 224 MeV the predicted value is
+
Re(p,, + 2p3q = Pq3 -2p33) = 0.025 - 0,008 (20a)
and the experimental value(13°) is
Re(pyy + 2p5 - P4 _ 2P55) = O. 028 I 0.020 (20b)

Again the agreement is good. However at 310 MeV the predicted value 15(136)

Re(p,, + 2D = Pq3 = 253) = 0.063  0.012 (21a)
and the experimental value is(12u)(126)
Re (Pyq + 2P3q = Py3 = 2p33) = 0.103 Z 0.015 (21p)
(+)

Comparing (21a) and (21b) it appears that the £, method is breaking down
at 310 MeV., Our general arguments at the beginning of the present section
about the approximations involved in the f§+) method would lead us to expect
the method to fail above 250 MeV.

Below 250 MeV we can try to uee these predictions to improve our

knowledge of the small p-wave amplitudes, There is no contradiction with

(136) Here f-wave errors have been ignored.
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the results discussed in §5(v) above, but unfortunately the errors
on the predicted values are appreciable and they give nothing new,
(vii) Summary

The main limitation of the improved CGLN method is the failure
of eqnse.(3.15) to converge at moderate or high energies., A further,
and related, limitation is caused by the (d-wave) subtraction constant
in the aAtH)"
the complete set of amplitudes around lab, energy 150 MeV. and it can be

relation, The convergence problem becomes serious for

traced to the effects of the strong low energy T=0, J=0 m-n interaction

on the A(+) amplitude, We saw thet the complete set of amplitudes gave good
s~ and p-wave predictions up to around 120 MeV( § 5(iv)). At higher
energies they do in fact go wrong.

The B(+) amplitude is not affected by the T=0, J=0 n-n interaction,
but here the T=0, J=2 n-n interaction detcrmines the convergence of eqna.
like (3,15). It is estimated that the breakdown now occurs in the region
250 ~ 300 MeV lab. pion energy. Using this and another approximation, the
CGLN method can be applied to the f(+)

2
problem does not appear here. The results (§5(vi)) are good up to 224

amplitude, and the subtraction

MeV, but by 310 MeV they have gone badly wrong, as we would expect.

For the (-) amplitudes the situation is very favourable. There is
no subtraction problem and the convergence of eqns(3.15) is governed by
the T=1 J=1 n-n interaction. The latter appears to te small up to
comparatively high n-n cnergies, and as a result the improved CGLN method
works well for the (~) amplitudes up to at least 310 MeV.

The results of applying these various cases are: (a) complete and
accurgte s- and p-wave predictions up to 120 MeV, (b) in the range 120 MeV-
220 MeV, by combining thepredictions with a limited amount of accurate
experimental data, we can obtain a fairly accurate idea of the s- and
p-waves, (¢) in the range 220 MeV - 310 MeV we get a fair idea about the
p-wave behaviour but only a very rough idea about the s-wave amplitudes.



APPENDIX A "
Theorem D and Related Formulae
Let P

h(y) =P J £(x) dx (1)
/ x (x-y)

and assume f(x) obeys c-nditions (i) (ii) (ii) stated in §2(iii).
Divide the range of integration into (1, &), (& %), (K, y -6 )
(y~-6§ ,y+8), (y+6 , 2y)(2y, ©® ) where A is large and § small.
Call the corresponding contributions to the integral (A.1), b shyyeie b
respectively, Then

f(x)

|h1]$ dx

w, r (W
w2 a3y [
A oy * ; where

A <; & Yy, by the second mean value theorem. By taking A (and
therefore g ) sufficiently large, the integral on the right can be
made as small as we wish (condition (i))

y-§ y-é
h3 = £(x)dx ) 1 dx (condition (ii))
x (x-y) Any (y=-x)
Yoy
- y-}‘z ° (‘(nx - Ané )
Any
£ fe af £(y-t) 4
h I -S-Y—-Lyé*t dt, v ' ea Pt A6 i dt,+ %)
1% = j t(y+t) t O
°

- ” -E‘l'-él*ﬁﬁ-?- dtl < My (condition (1ii)) ( 0 < @< 1)



"3

2y
_ 1 dx
h5 =0 ) s xyz(x-y) condition (11i))
y+é
faeti
y '
©0 " ¢
&£ 2 £(x)
h, = ==~ dx =} = dx where > 2y
6 x-y x (y ) x ;
2y 2y

by the second mean value theorem,

Choose first A large and (5‘ small, and then y large enough.

Now consider the special case of eqn. (1) when f(x) = 1/ dnx
and the lower limit of integration is x = 2. Subdivide the range of
integration into (2, 4 ), (A %), (U, vy -8), (y -&, y+§),

(y +8, 2y),(2y,00), and call the corresponding contributions hyy oo Bgo

Treat h1 as before. For h2 use the second mean value theorem

y/
[
" xyzfnx(x-y)

1 f; dx ,
h
s ) P(x-y) here A< s,

¥y
80 / bl dx

]
Ih,| < Znd ) Fx -9 ,

in the form

n
H

giving
2
‘ha‘ < £n ( 2+9)
€nA



We note that 14

3'5 dx
By~ gi— — (2)
3 oy x’ﬁ(x -y)
y/e

with an error of order y'%(ﬁny)-z. Eqn(2) gives

1
h, ~ ———— (- Loy + 8§ +{X1))
2 v £y

Similarly

h5 ~ -;%—Zw- ( 4ny -~ £né +O1))

80 1
h, + h, ~
3 5 £y
Also
lh" | « 24
¥ ( Luy)®
Finally o
h, = &
6 x’gbnx(x-y)
2y
00
< 2 £n (V2+1)

ln(ay) 3—2 (x—y) yy2 £n(2y)

Now y’ﬁ h can be made arbitrarily small by choosing A sufficiently

large. Finally, yﬁh,‘, yy"(hfhs) ?&hu and yﬁhG tend to zero as y»0o0
Hence

N”h(y) ~> 0 as y-—» G0

A similar argument is valid if f£(x) = 1/ £nénx.

A



APPENDIX B ns

Convergence of Legendre Series and Cosine Series

First we discuss why Legendre series like (3.1) have elliptic
regions of convergence in the complex cos © - plane, Then we show how
to deduce the ellipse of convergence for the Legendre series from the
position of the singularities in the Mandelstam representation.

We define Pn(z), where z may be complex, by

(2n-1)!!'} n _n(n=-1) n-z , n(n-1)(n-2)(n- n-4
Pal2) = =5 [‘”“ 2(2o-1 * 2Lk (an-N.(2n-3)  ° = ](1)

let z = x + iy when x and y are real. For z = x where |[xi€ 1, we

write x = cos O where O is real, and we have

2n-1)!! 1.n 1.3.n(n-1
P(x) = 2.2 [cos(ne)m c°s((n-z)e>«1-%.-é—n_—1-}-@;_-3)cox((n-u)o>+.]

n!
(2)
Eqn.(2) gives Py(z) for unphysical values of z if we write @=a+ig and

Cos(a + 1 8 )

Cos a Coshp -1 8in a Sin hp (3

where a and ﬁ are real and B3 0. On the real axis x>1 we have
a= 0 and x = Cos hﬁ y while the portion x & -1 is given by a= %, x=-Cosly

If n is large Stirling's Theorem shows that eqn(2) has the
asymptotic form

Pn(x)e-'.. g—{Coe(ne)-r-;- Cos((n-2)0)+ ;]—'2 l Cos((n-4)0)

.2 2
e 2 (4)
1. L 1
+ 323 L5 contn-620) + ... }

This is a suitable expression for examining the form of P n(z) for large
n. Using (2) and (3) with > 0 we get

Pn(z’zé. {cos(n(a-rip )) o+ % coe((n-z)(aﬁ.ﬁ ) o+ .. }' (5)

~ A enﬂe-ina Fa,B)
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where

Fo, @)= 1 43 g7t | 12 iae'“’ ede ., . (e

The approximation (5) is only valid for 8 1. Since g> 0
th» series (6) converges, and gives(*)

-ys
Fla, @ )=(1 - @224 7

(%) The asymptotic estimate given by eqns (5) and (7) is sometimes

written in the form
1

Pn(z Y& exp { ~i(n+¥2)o + i“/‘*} , ImQ0320

2nn Sin ©

From (5) and (7) we have the asymptotic behaviour

’Pn( z )/2'/: enﬁ {1-28-2ﬂcos 2a +e""°} -

nn

(8)
00
The convergence of a Legendre series n_EOQ-n Pn(z) is therefore determined

by the eonvergence of the series T e e ng b-yz
n=0 '

If

Linm lan 11{" = e'/3°
n > o0
then by Cauchy's test, the latter series converges for f3< ﬁo

The points 2z for which ﬁ =/3o lie on the ellipse

(9)

2 2
L 1

X
cos h2l0° ' sin h2 /Qo

If the length of the real semi-axis is x, = cos h A o! the other semi-

axis has length (xoz- 1)”: sin h Bo Finally the relation

eﬂ°= 50* (xoa- 1)%_7 expresses eqn,(9) in terms of x . These results
explain the general form of Lehmann's Theorems in § 3(1).

When we use the Mandelstam representation to find the
singularities in the cos@-plane, we have pole terms like (u - #2)~" and
cuts involving (u'-u)'1.(t'-t)'1. We can regard a cut as a line of poles,
and if we remember that u and t are linear in cos O when 8 is fixed, we



n7
see that the singularities in the z = cos O plane are all of the form
(xo- z.)'1 where X, is real and 'xol > 1., We need only consider the
singularity which gives the smallest |x o, + The emallest value of lxol

was called y (s) in § 3(1v).

Consider the expansion

©0
xzzz %. 2(z/x )n (10)
0 o n=0 o]

This gives the Taylor series in powers of cos @, and it has radius of
convergence X, (we take x, > 0). We wish to find the ellipse of
convergence of the Legendre series for (xo - z)'1. Take the point x on
the real axis when x > 1. Then

X = cos @ = cos h3 =Y(§ +'/;) where ;:eﬂ

L 23 (11)

2%
Also = =
X © X 2X%F 3T (y-3)(F -4,

where 6’1, JZ are the zeros of
2
;-Zxog +1
2_\k
Now x > 1, and we write § = x +(x -1 Also 4, 4" ,=1, s0 §,< 1.

Expand (11) in a Laurent series in ; ,

2: o T (k)T dn
A RIS T ANNE f:‘?) o 1)

2
---{?(3/,)“», % (%3 S e
! n=1

§- &, Lneo
after a little rearrangement
Hence
00 _-n _n oo n_-ng
1 2{23'16’8+23’e } (13)
X, =X J-¥, L n=0 uw’] 2

Now let the Legendre expansion be
1 o0 (14)
= L a P (x) 1
X, =X n=0 R 1 .




g
Coneider the form of this for x > 1. Putting a = O in (5) and using

(7) gives for >1 and n - ©q

1 4 np
™~ e
PLOT (1o ek

Comparing with the series of positive powers of eﬂ in (13), we see that

for n large,

&, ~ n%J,‘-n (15)
Also (13) converges for e‘e(a" , similarly the Legendre series (14)
converges for %
x4+ (xP-1) €% ¢ (x02_1)}’z

(16)

i,e. for X < X,

It follows from the above analysis that if the nearest singularity in
the Mandelstam representation is yo(s), the Legendre expansion for the
scattering amplitude converges in an ellipse with foci x = : 1, and semi-
axes y_(8),( ( y (e)? - D%

Further, by (15) 1 -1
| Lin o /"= [y (8) + ((y (1217 (17)

n —-»c0

A wigorous derivation of the above result comes from Heine's

expansion( T )

1 ol
— nfo(znn) P (Z) Q(t)

which is valid if @ is in the interior of the ellipse which has foci ¥
and passes through t.

(1) See for example §15.h of E.T.Whittaker and G.N.Watson,
Modern Analysis (Cambridge University Press, New York, 1952). For
further details of the asymptotic expansion of Pn( 2z) for large n
see §11.} of E.T.Copson, Theory of Functions of a Complex Variable,
(Oxford University Press, New York, 1952)
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Figure Captions

The ocontour C and the contours around the cuts of f£(s) used

in deriving eqns.(1,16), (1.17) and (2.1).

Experimental values of the total nt o+ p and @+ p cross
sectionsca'and O’ at high energies. The broken lines are
possible smooth fits to the data. The values used are based
on the results of M.J.Longo et al; Phys.Rev, Letters 3, 568
(1959); G. von Dardel et al, Ibid 7, 127 (1961); S.J.lLindenbaum
et al; Ibid 7, 352 (1961). ’

The region to the right of the curve shows where the spectral
function /an(u,t) is non-zero.

The region to the right of the curve shows where the spectral

function f%1(s,u) is non-zero.

The various continuation regions for Re A(+)( N,z&a) in the
real (z&a,qz) plane.

Experimental values of the total &' + p and ® + p total cross-
sections (¥, and ( in the range O.4 BeV to 2.0 BeV. The

curves are possible smooth fits to the experimental values.

The values of Im B+(LOL,O) and Im B_(u)L,O) up to 1.4 BeV,
The vertical scales are in natural units ( & =c = p = 1).

(=)' (=)

The values of Im A and Im B
scales are in natural units.

up to 1.4 BeV. The vertical
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Fig. 11

Fig. 12

i PRI e r N

120.
-2e

The solid curve shows the predicted values of Re 8, up to
120 MeV. The experimental point at $S MeV is the Liverpool
result (reference (114)). The broken curve from 120 MeV

to 350 MeV is obtained by using the predicted values of
Re(e1-53) shown in Fig. 12 and the extrapolated values of
Re 53 given by the broken line in Fig. 10.

The solid curve shows the predicted values of Re 33 up to 120
MeV. The experimental values shown are the Liverpool result at
98 MeV (reference (114)) and the result of Foote et al. at

310 MeV. The broken curve from 120 MeV up to 350 MeV is a

smooth continuation of the predicted values drawn to pass through
the experimental value at 310 MeV.

Predicted values of the small p-wave scattering auplitudes

Re Pyqs Re p31, Re p13 are shown up to 120 MeV. Between

120 MeV and 220 MeV we show conjectured values which arc in
agreement with the predicted values of Re (p11-p31) and

Re (p33-p13) shown in Figs. 13 and 14, and with the experimental
data which is discussed in § S5(v) below.

The predicted values of Re(s1-33). The broken lines show other
predictions by the CGLN method due to Finn and H8hler and Dietz.
The latter approximated the dispersion integrals by inserting
only the (g, g) resonance, and then made a rough estimate of

the necessary corrections. The curve ~.~. shows the results
of Dietz (Karlsruhe preprint (1961)) who tried to estimate these
corrections by using a subtracted dispersion relation and
incorporating knowledge of the T=1 ®-n interaction.

The predicted values of Re(p11-p31). The solid line shows the
values derived using the parameters given in eqn(4.49). The broken
line shows the values obtained using 8, -8y,= ~0.060, The experi-
mental values at 98 MeV, 224 MeV and 310 MeV are those discussed
in the text.

The predicted values of Re(psz-p15). using the parametersgiven
in eqn(4.49).
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